Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation

被引:344
作者
Belsher, Bradley E. [1 ,2 ]
Smolenski, Derek J. [1 ]
Pruitt, Larry D. [1 ]
Bush, Nigel E. [1 ]
Beech, Erin H. [1 ]
Workman, Don E. [1 ,2 ]
Morgan, Rebecca L. [3 ]
Evatt, Daniel P. [1 ,2 ]
Tucker, Jennifer [1 ]
Skopp, Nancy A. [1 ]
机构
[1] Def Hlth Agcy, Psychol Hlth Ctr Excellence, Silver Spring, MD USA
[2] Uniformed Serv Univ Hlth Sci, Bethesda, MD 20814 USA
[3] McMaster Univ, Dept Clin Epidemiol & Biostat, Hamilton, ON, Canada
关键词
ASSESS RISK; RESILIENCE; BEHAVIORS; MACHINE; ARMY; METAANALYSIS; PREVENTION; REGRESSION; VETERANS; IDEATION;
D O I
10.1001/jamapsychiatry.2019.0174
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
ImportanceSuicide prediction models have the potential to improve the identification of patients at heightened suicide risk by using predictive algorithms on large-scale data sources. Suicide prediction models are being developed for use across enterprise-level health care systems including the US Department of Defense, US Department of Veterans Affairs, and Kaiser Permanente. ObjectivesTo evaluate the diagnostic accuracy of suicide prediction models in predicting suicide and suicide attempts and to simulate the effects of implementing suicide prediction models using population-level estimates of suicide rates. Evidence ReviewA systematic literature search was conducted in MEDLINE, PsycINFO, Embase, and the Cochrane Library to identify research evaluating the predictive accuracy of suicide prediction models in identifying patients at high risk for a suicide attempt or death by suicide. Each database was searched from inception to August 21, 2018. The search strategy included search terms for suicidal behavior, risk prediction, and predictive modeling. Reference lists of included studies were also screened. Two reviewers independently screened and evaluated eligible studies. FindingsFrom a total of 7306 abstracts reviewed, 17 cohort studies met the inclusion criteria, representing 64 unique prediction models across 5 countries with more than 14 million participants. The research quality of the included studies was generally high. Global classification accuracy was good (>= 0.80 in most models), while the predictive validity associated with a positive result for suicide mortality was extremely low (<= 0.01 in most models). Simulations of the results suggest very low positive predictive values across a variety of population assessment characteristics. Conclusions and RelevanceTo date, suicide prediction models produce accurate overall classification models, but their accuracy of predicting a future event is near 0. Several critical concerns remain unaddressed, precluding their readiness for clinical applications across health systems.
引用
收藏
页码:642 / 651
页数:10
相关论文
共 46 条
[11]   Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea [J].
Choi, Soo Beom ;
Lee, Wanhyung ;
Yoon, Jin-Ha ;
Won, Jong-Uk ;
Kim, Deok Won .
JOURNAL OF AFFECTIVE DISORDERS, 2018, 231 :8-14
[12]  
Corr William P 3rd, 2014, MSMR, V21, P2
[13]  
[Anonymous], 2014, MSMR, V21, P2
[14]   Using Neural Networks with Routine Health Records to Identify Suicide Risk: Feasibility Study [J].
DelPozo-Banos, Marcos ;
John, Ann ;
Petkov, Nicolai ;
Berridge, Damon Mark ;
Southern, Kate ;
LLoyd, Keith ;
Jones, Caroline ;
Spencer, Sarah ;
Manuel Travieso, Carlos .
JMIR MENTAL HEALTH, 2018, 5 (02)
[15]   Risk Factors for Suicidal Thoughts and Behaviors: A Meta-Analysis of 50 Years of Research [J].
Franklin, Joseph C. ;
Ribeiro, Jessica D. ;
Fox, Kathryn R. ;
Bentley, Kate H. ;
Kleiman, Evan M. ;
Huang, Xieyining ;
Musacchio, Katherine M. ;
Jaroszewski, Adam C. ;
Chang, Bernard P. ;
Nock, Matthew K. .
PSYCHOLOGICAL BULLETIN, 2017, 143 (02) :187-U121
[16]   Evaluation of clinical prognostic models for suicide attempts after a major depressive episode [J].
Galfalvy, H. C. ;
Oquendo, M. A. ;
Mann, J. J. .
ACTA PSYCHIATRICA SCANDINAVICA, 2008, 117 (04) :244-252
[17]   Uses and abuses of screening tests [J].
Grimes, DA ;
Schulz, KF .
LANCET, 2002, 359 (9309) :881-884
[18]   Predicting high-risk behaviors in veterans with posttraumatic stress disorder [J].
Hartl, TL ;
Rosen, C ;
Drescher, K ;
Lee, TT ;
Gusman, F .
JOURNAL OF NERVOUS AND MENTAL DISEASE, 2005, 193 (07) :464-472
[19]   Suicide Prevention: An Emerging Priority For Health Care [J].
Hogan, Michael F. ;
Grumet, Julie Goldstein .
HEALTH AFFAIRS, 2016, 35 (06) :1084-1090
[20]   Exploratory Data Mining Analysis Identifying Subgroups of Patients With Depression Who Are at High Risk for Suicide [J].
Ilgen, Mark A. ;
Downing, Karen ;
Zivin, Kara ;
Hoggatt, Katherine J. ;
Kim, H. Myra ;
Ganoczy, Dara ;
Austin, Karen L. ;
McCarthy, John F. ;
Patel, Jignesh M. ;
Valenstein, Marcia .
JOURNAL OF CLINICAL PSYCHIATRY, 2009, 70 (11) :1495-1500