Quantitative imaging of sleep behavior in Caenorhabditis elegans and larval Drosophila melanogaster

被引:12
|
作者
Churgin, Matthew A. [1 ]
Szuperak, Milan [2 ]
Davis, Kristen C. [3 ,4 ]
Raizen, David M. [3 ,5 ,6 ]
Fang-Yen, Christopher [1 ,7 ]
Kayser, Matthew S. [2 ,5 ,6 ,7 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Psychiat, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, CEET, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, Chronobiol Program, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Ctr Sleep & Circadian Neurobiol, Philadelphia, PA 19104 USA
[7] Univ Penn, Perelman Sch Med, Dept Neurosci, Philadelphia, PA 19104 USA
基金
欧盟地平线“2020”;
关键词
QUIESCENCE; STRESS; SYSTEM; POLY(DIMETHYLSILOXANE); CIRCUITRY; DELETION; INSULIN; SURFACE; MODEL; STATE;
D O I
10.1038/s41596-019-0146-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Sleep is nearly universal among animals, yet remains poorly understood. Recent work has leveraged simple model organisms, such as Caenorhabditis elegans and Drosophila melanogaster larvae, to investigate the genetic and neural bases of sleep. However, manual methods of recording sleep behavior in these systems are labor intensive and low in throughput. To address these limitations, we developed methods for quantitative imaging of individual animals cultivated in custom microfabricated multiwell substrates, and used them to elucidate molecular mechanisms underlying sleep. Here, we describe the steps necessary to design, produce, and image these plates, as well as analyze the resulting behavioral data. We also describe approaches for experimentally manipulating sleep. Following these procedures, after similar to 2 h of experimental preparation, we are able to simultaneously image 24 C. elegans from the second larval stage to adult stages or 20 Drosophila larvae during the second instar life stage at a spatial resolution of 10 or 27 mu m, respectively. Although this system has been optimized to measure activity and quiescence in Caenorhabditis larvae and adults and in Drosophila larvae, it can also be used to assess other behaviors over short or long periods. Moreover, with minor modifications, it can be adapted for the behavioral monitoring of a wide range of small animals.
引用
收藏
页码:1455 / 1488
页数:34
相关论文
共 50 条
  • [1] Quantitative imaging of sleep behavior in Caenorhabditis elegans and larval Drosophila melanogaster
    Matthew A. Churgin
    Milan Szuperak
    Kristen C. Davis
    David M. Raizen
    Christopher Fang-Yen
    Matthew S. Kayser
    Nature Protocols, 2019, 14 : 1455 - 1488
  • [2] The immunoglobulin superfamily in Caenorhabditis elegans and Drosophila melanogaster
    Hobert, O
    Hutter, H
    Hynes, RO
    DEVELOPMENT, 2004, 131 (10): : 2237 - 2238
  • [3] Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans
    Lashmanova, Ekaterina
    Proshkina, Ekaterina
    Zhikrivetskaya, Svetlana
    Shevchenko, Oksana
    Marusich, Elena
    Leonov, Sergey
    Melerzanov, Alex
    Zhavoronkov, Alex
    Moskalev, Alexey
    PHARMACOLOGICAL RESEARCH, 2015, 100 : 228 - 241
  • [4] Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans
    Bass, Timothy M.
    Weinkove, David
    Houthoofd, Koen
    Gems, David
    Partridge, Linda
    MECHANISMS OF AGEING AND DEVELOPMENT, 2007, 128 (10) : 546 - 552
  • [5] Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster
    Hill, E
    Broadbent, ID
    Chothia, C
    Pettitt, J
    JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (05) : 1011 - 1024
  • [6] Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states
    Szigeti, Balazs
    Deogade, Ajinkya
    Webb, Barbara
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (113)
  • [7] Sequence and expression of the kettin gene in Drosophila melanogaster and Caenorhabditis elegans
    Kolmerer, B
    Clayton, J
    Benes, V
    Allen, T
    Ferguson, C
    Leonard, K
    Weber, U
    Knekt, M
    Ansorge, W
    Labeit, S
    Bullard, B
    JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (02) : 435 - 448
  • [8] Peptide O-xylosyltransferases of Caenorhabditis elegans and Drosophila melanogaster
    Wilson, IBH
    GLYCOBIOLOGY, 2002, 12 (10) : 680 - 680
  • [9] Paucimannose N-glycans in Caenorhabditis elegans and Drosophila melanogaster
    Schachter, Harry
    CARBOHYDRATE RESEARCH, 2009, 344 (12) : 1391 - 1396
  • [10] Comparative Functional Analysis of the Caenorhabditis elegans and Drosophila melanogaster Proteomes
    Schrimpf, Sabine P.
    Weiss, Manuel
    Reiter, Lukas
    Ahrens, Christian H.
    Jovanovic, Marko
    Malmstroem, Johan
    Brunner, Erich
    Mohanty, Sonali
    Lercher, Martin J.
    Hunziker, Peter E.
    Aebersold, Ruedi
    von Mering, Christian
    Hengartner, Michael O.
    PLOS BIOLOGY, 2009, 7 (03) : 616 - 627