Compressed sensing based on dictionary learning for extracting impulse components

被引:162
作者
Chen, Xuefeng [1 ]
Du, Zhaohui [1 ]
Li, Jimeng [1 ]
Li, Xiang [1 ]
Zhang, Han [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Compressed sensing; Dictionary learning; Impulse components; Sparse representation; SIGNAL RECOVERY; SPARSE; IMAGE; ALGORITHM; REPRESENTATIONS; OPTIMIZATION; ADAPTATION; SCALE; SURE;
D O I
10.1016/j.sigpro.2013.04.018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is essential to extract impulse components embedded in heavy background noise in engineering applications. The methods based on wavelet have obtained huge success in removing noises, leading to state-of-the-art results. However, complying with the minimum noise principle, the shrinkage/thresholding algorithms unreasonably remove most energy of the features, and sometimes even discard some important features. Thus it is not easy to guarantee satisfactory performance in actual applications. Based on a recently proposed theory named compressed sensing, this paper presents a new scheme, Sparse Extraction of Impulse by Adaptive Dictionary (SpaEIAD), to extract impulse components. It relies on the sparse model of compressed sensing, involving the sparse dictionary learning and redundant representations over the learned dictionary. SpaEIAD learns a sparse dictionary from a whole noisy signal itself and then employs greedy algorithms to search impulse information in the learned sparse dictionary. The performance of the algorithm compares favourably with that of the mature shrinkage/thresholding methods. There are two main advantages: firstly, the learned atoms are tailored to the data being analyzed and the process of extracting impulse information is highly adaptive. Secondly, sparse level of representation coefficients is promoted largely. This algorithm is evaluated through simulations and its effectiveness of extracting impulse components is demonstrated on vibration signal of motor bearings. The advantage of SpaEIAD is further validated through detecting fault components of gearbox, which illustrates that SpaEIAD can be generalized to engineering application, such as rotating machinery signal processing. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 109
页数:16
相关论文
共 74 条
[1]   A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing [J].
Abolghasemi, Vahid ;
Ferdowsi, Saideh ;
Sanei, Saeid .
SIGNAL PROCESSING, 2012, 92 (04) :999-1009
[2]   Structural health monitoring of wind turbines: method and application to a HAWT [J].
Adams, Douglas ;
White, Jonathan ;
Rumsey, Mark ;
Farrar, Charles .
WIND ENERGY, 2011, 14 (04) :603-623
[3]   Audio Inpainting [J].
Adler, Amir ;
Emiya, Valentin ;
Jafari, Maria G. ;
Elad, Michael ;
Gribonval, Remi ;
Plumbley, Mark D. .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (03) :922-932
[4]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[5]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[6]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[7]   A brief status on condition monitoring and fault diagnosis in wind energy conversion systems [J].
Amirat, Y. ;
Benbouzid, M. E. H. ;
Al-Ahmar, E. ;
Bensaker, B. ;
Turri, S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (09) :2629-2636
[8]  
[Anonymous], 2007, CAAM TR07-07
[9]  
Antoniadis Anestis, 2001, J. Stat. Softw., V6, P1
[10]   A box constrained gradient projection algorithm for compressed sensing [J].
Broughton, R. L. ;
Coope, I. D. ;
Renaud, P. F. ;
Tappenden, R. E. H. .
SIGNAL PROCESSING, 2011, 91 (08) :1985-1992