POROSITY OF CERTAIN SUBSETS OF LEBESGUE SPACES ON LOCALLY COMPACT GROUPS

被引:5
作者
Akbarbaglu, I. [1 ]
Maghsoudi, S. [1 ]
机构
[1] Univ Zanjan, Dept Math, Zanjan 45195313, Iran
关键词
Lebesgue space; sigma-c-lower porous set; locally compact group; convolution; CONVOLUTION;
D O I
10.1017/S0004972712000949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact group. In this paper, we show that if G is a nondiscrete locally compact group, p epsilon (0, 1) and q epsilon (0 + infinity], then {(f, g) epsilon L-p(G) x L-q(G) : f * g is finite lambda- a.e.} is a set of first category in L-p(G) x L-q(G). We also show that if G is a nondiscrete locally compact group and p, q, r epsilon [1, + infinity] such that 1/p + 1/q > 1 + 1/r, then {(f,g) epsilon L-p(G) x L-q(G) : f * g epsilon L-r(G)}, is a set of first category in L-p(G) x L-q(G). Consequently, for p, q epsilon [1 + infinity) and r epsilon [1, + infinity] with 1/p + 1/q > 1 + 1/r, G is discrete if and only if L-p(G) * L-q(G) subset of L-r(G); this answers a question raised by Saeki ['The L-p-conjecture and Young's inequality', Illinois J. Math. 34 (1990), 615-627].
引用
收藏
页码:113 / 122
页数:10
相关论文
共 11 条
[1]   An answer to a question on the convolution of functions [J].
Akbarbaglu, Ibrahim ;
Maghsoudi, Saeid .
ARCHIV DER MATHEMATIK, 2012, 98 (06) :545-553
[2]  
Folland G., 1995, 1 COURSE ABSTRACT HA
[3]  
Gaudet Roland J., 1970, Bull. Austral. Math. Soc, V3, P289, DOI 10.1017/S0004972700045998
[4]   Porosity and the Lp -conjecture [J].
Glab, Szymon ;
Strobin, Filip .
ARCHIV DER MATHEMATIK, 2010, 95 (06) :583-592
[5]  
Hewitt E., 1970, Abstract Harmonic Analysis I, II
[6]   SHARPNESS OF YOUNGS-INEQUALITY FOR CONVOLUTION [J].
QUEK, TS ;
YAP, LYH .
MATHEMATICA SCANDINAVICA, 1983, 53 (02) :221-237
[7]  
RICKERT NW, 1967, P AM MATH SOC, V18, P762
[8]   THE LP-CONJECTURE AND YOUNGS-INEQUALITY [J].
SAEKI, S .
ILLINOIS JOURNAL OF MATHEMATICS, 1990, 34 (03) :614-627
[9]   On σ-porous sets in abstract spaces [J].
Zajicek, L. .
ABSTRACT AND APPLIED ANALYSIS, 2005, (05) :509-534
[10]  
ZELAZKO W. ., 1961, COLLOQ MATH-WARSAW, V8, P205