A perturbation-incremental method for strongly nonlinear autonomous oscillators with many degrees of freedom

被引:31
作者
Chung, KW
Chan, CL
Xu, Z
Mahmoud, GM
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Zhongshan Univ, Dept Mech, Guangzhou, Peoples R China
[3] Univ Assiut, Fac Sci, Dept Math, Assiut 71516, Egypt
关键词
limit cycles; strongly nonlinear coupled oscillators; Floquet method; bifurcation;
D O I
10.1023/A:1015620928121
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The perturbation-incremental method is extended to determine the bifurcations and limit cycles of strongly nonlinear autonomous oscillators with many degrees of freedom. Coupled van der Pol oscillators and coupled Rayleigh oscillators are taken as numerical examples. Limit cycles of the oscillators can be calculated to any desired degree of accuracy. The stabilities of limit cycles are also discussed.
引用
收藏
页码:243 / 259
页数:17
相关论文
共 15 条
[1]   Myelodysplastic syndrome in children: Differentiation from acute myeloid leukemia with a low blast count [J].
Chan, GCF ;
Wang, WC ;
Raimondi, SC ;
Behm, FG ;
Krance, RA ;
Chen, G ;
Freiberg, A ;
Ingram, I ;
Butler, D ;
Head, DR .
LEUKEMIA, 1997, 11 (02) :206-211
[2]  
Chan HSY, 1998, 3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, P597
[3]   A perturbation-incremental method for strongly non-linear oscillators [J].
Chan, HSY ;
Chung, KW ;
Xu, Z .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (01) :59-72
[4]   Stability and bifurcations of limit cycles by the perturbation-incremental method [J].
Chan, HSY ;
Chung, KW ;
Xu, Z .
JOURNAL OF SOUND AND VIBRATION, 1997, 206 (04) :589-604
[5]   INTERNAL RESONANCE OF STRONGLY NONLINEAR AUTONOMOUS VIBRATING SYSTEMS WITH MANY DEGREES OF FREEDOM [J].
CHEUNG, YK ;
XU, Z .
JOURNAL OF SOUND AND VIBRATION, 1995, 180 (02) :229-238
[6]   NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II) BIFURCATION IN INFINITE DIMENSIONS [J].
Doedel, Eusebius ;
Keller, Herbert B. ;
Kernevez, Jean Pierre .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (04) :745-772
[7]   NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (I) BIFURCATION IN FINITE DIMENSIONS [J].
Doedel, Eusebius ;
Keller, Herbert B. ;
Kernevez, Jean Pierre .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :493-520
[8]  
Lau SL., 1992, Appl Math Mech, V13, P29
[9]  
Nayfeh AH, 2008, APPL NONLINEAR DYNAM
[10]  
NAYFEH AH, 1993, INTRO PERTURBATION