Families of transverse Poincare homoclinic orbits in 2N-dimensional Hamiltonian systems close to the system with a loop to a saddle-center

被引:17
作者
Koltsova, OY [1 ]
Lerman, LM [1 ]
机构
[1] RES INST APPL MATH & CYBERNET, NIZHNII NOVGOROD 603005, RUSSIA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 06期
关键词
D O I
10.1142/S0218127496000540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the theorem: if an n-degrees-of-freedom Hamiltonian system has an equilibrium of the saddle-center type (there is a pair of simple eigenvalues +/- i omega; the rest of the spectrum consists of eigenvalues with nonzero real parts) with a homoclinic orbit to it then this system, and all those close to it, have transversal Poincare homoclinic orbits to Lyapunov periodic orbits if some genericity conditions are satisfied. These conditions are pointed out explicitly. Thus a new criterion of nonintegrability has been obtained.
引用
收藏
页码:991 / 1006
页数:16
相关论文
共 25 条
[11]   PERIODIC AND HOMOCLINIC ORBITS IN A 2-PARAMETER UNFOLDING OF A HAMILTONIAN SYSTEM WITH A HOMOCLINIC ORBIT TO A SADDLE-CENTER [J].
KOLTSOVA, OY ;
LERMAN, LM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (02) :397-408
[12]  
Lang S., 1962, INTRO DIFFERENTIABLE
[13]   CLASSIFICATION OF 4-DIMENSIONAL INTEGRABLE HAMILTONIAN-SYSTEMS AND POISSON ACTIONS OF R(2) IN EXTENDED NEIGHBORHOODS OF SIMPLE SINGULAR POINTS .2. [J].
LERMAN, LM ;
UMANSKII, YL .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1994, 78 (02) :479-506
[14]  
LERMAN LM, 1991, SELECTA MATH SOV, V10, P297
[15]  
LYAPUNOV AM, 1947, ANN MATH STUDY, V17
[16]  
Mielke A., 1992, Journal of Dynamics and Differential Equations, V4, P95, DOI 10.1007/BF01048157
[17]  
MIELKE A, 1993, LECT NOTES MATH, V1489
[18]  
Milnor J, 1963, Ann. of Math. Stud.
[19]  
Palis J., 1968, TOPOLOGY, V8, P385
[20]   NONINTEGRABILITY OF SOME HAMILTONIAN-SYSTEMS, SCATTERING AND ANALYTIC CONTINUATION [J].
RAGAZZO, CG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (02) :255-277