Testing for and against a set of inequality constraints: The k-sample case

被引:1
作者
Elbarmi, Hammou [1 ]
Nunez-Anton, Vicente [2 ]
Zimmerman, Dale L. [3 ]
机构
[1] CUNY, Baruch Coll, Dept Stat & CIS, New York, NY 10021 USA
[2] Univ Basque Country, Dept Econometria & Estadist EA 3, E-48080 Bilbao, Spain
[3] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
关键词
Chi-bar square; Inequality constraints; Lagrange multipliers; Likelihood ratio; Orthant probabilities; MAXIMUM-LIKELIHOOD-ESTIMATION; FENCHEL DUALITY;
D O I
10.1016/j.jspi.2008.06.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we aim to generalize the existing results and provide a test for testing for and against a set of inequality constraints placed upon any k (k >= I) vectors of parameters corresponcling to k populations. The approach we take is the likelihood ratio approach. We show that the limiting distributions of the likelihood ratio test are of chi-bar square type and provide the expression of the weighting values. Examples are discussed to illustrate the theoretical results. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1012 / 1022
页数:11
相关论文
共 13 条
[1]   The analysis of contingency tables under inequality constraints [J].
Agresti, A ;
Coull, BA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 107 (1-2) :45-73
[2]   MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS SUBJECT TO RESTRAINTS [J].
AITCHISON, J ;
SILVEY, SD .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (03) :813-828
[3]  
[Anonymous], COMP SCI STAT VOL 25
[4]  
El Barmi H, 1999, J NONPARAMETR STAT, V11, P233
[5]   A unified approach to testing for and against a set of linear inequality constraints in the product multinomial setting [J].
El Barmi, Hammou ;
Johnson, Matthew .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (08) :1894-1912
[6]   Restricted product multinomial and product Poisson maximum likelihood estimation based upon Fenchel duality [J].
ElBarmi, H ;
Dykstra, RL .
STATISTICS & PROBABILITY LETTERS, 1996, 29 (02) :117-123
[7]   RESTRICTED MULTINOMIAL MAXIMUM-LIKELIHOOD-ESTIMATION BASED UPON FENCHEL DUALITY [J].
ELBARMI, H ;
DYKSTRA, RL .
STATISTICS & PROBABILITY LETTERS, 1994, 21 (02) :121-130
[8]  
Genz Alan., 1992, Journal_of_Computational_and_Graphical_Statistics, P141, DOI DOI 10.1080/10618600.1992.10477010
[9]  
KUDO A, 1963, BIOMETRIKA, V50, P403, DOI 10.1093/biomet/50.3-4.403
[10]   ASYMPTOTIC PROPERTIES OF MAXIMUM-LIKELIHOOD ESTIMATORS AND LIKELIHOOD RATIO TESTS UNDER NONSTANDARD CONDITIONS [J].
SELF, SG ;
LIANG, KY .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (398) :605-610