Finite-size scaling analysis of biased diffusion on fractals

被引:0
|
作者
Sartoni, G
Stella, AL
机构
[1] UNIV BOLOGNA,DIPARTIMENTO FIS,I-40126 BOLOGNA,ITALY
[2] UNIV BOLOGNA,SEZ INFN,I-40126 BOLOGNA,ITALY
[3] UNIV PADUA,SEZ INFN,I-35131 PADUA,ITALY
[4] INFM,DIPARTIMENTO FIS,I-35131 PADUA,ITALY
来源
PHYSICA A | 1997年 / 241卷 / 3-4期
关键词
logarithmic diffusion; bias; finite size scaring;
D O I
10.1016/S0378-4371(97)00166-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion on a T fractal lattice under the influence of topological biasing fields is studied by finite size scaling methods. This allows to avoid proliferation and singularities which would arise in a renormalization group approach on infinite system as a consequence of logarithmic diffusion. Within the scheme, logarithmic diffusion is proved on the basis of an analysis of various temporal scales such as first passage time moments and survival probability characteristic time. This confirms and puts on firmer basis previous renormalization group results. A careful study of the asymptotic occupation probabilities of different kinds of lattice points allows to elucidate the mechanism of trapping into dangling ends, which is responsible of the logarithmic time dependence of average displacement.
引用
收藏
页码:453 / 468
页数:16
相关论文
共 50 条
  • [31] Finite-size scaling of the quasispecies model
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (2-B):
  • [32] ORDER PARAMETER AND FINITE-SIZE SCALING
    TAKANO, H
    SAITO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06): : 1369 - 1376
  • [33] Finite-size scaling of meson propagators
    Damgaard, PH
    Diamantini, MC
    Hernández, P
    Jansen, K
    NUCLEAR PHYSICS B, 2002, 629 (1-3) : 445 - 478
  • [34] Finite-size scaling in disordered systems
    Chamati, H
    Korutcheva, E
    Tonchev, NS
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026129
  • [35] Finite-Size Scaling at the Jamming Transition
    Goodrich, Carl P.
    Liu, Andrea J.
    Nagel, Sidney R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [36] Finite-size scaling of kinetic quantities
    Tarasenko, AA
    Nieto, F
    Uebing, C
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (15) : 3437 - 3440
  • [37] Finite-size scaling of eigenstate thermalization
    Beugeling, W.
    Moessner, R.
    Haque, Masudul
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [38] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [39] FINITE-SIZE SCALING FOR POTTS MODELS
    BORGS, C
    KOTECKY, R
    MIRACLESOLE, S
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) : 529 - 551
  • [40] FINITE-SIZE SCALING FOR THE BOSE CONDENSATE
    SINGH, S
    PATHRIA, RK
    CANADIAN JOURNAL OF PHYSICS, 1985, 63 (03) : 358 - 365