Finite-size scaling analysis of biased diffusion on fractals

被引:0
|
作者
Sartoni, G
Stella, AL
机构
[1] UNIV BOLOGNA,DIPARTIMENTO FIS,I-40126 BOLOGNA,ITALY
[2] UNIV BOLOGNA,SEZ INFN,I-40126 BOLOGNA,ITALY
[3] UNIV PADUA,SEZ INFN,I-35131 PADUA,ITALY
[4] INFM,DIPARTIMENTO FIS,I-35131 PADUA,ITALY
来源
PHYSICA A | 1997年 / 241卷 / 3-4期
关键词
logarithmic diffusion; bias; finite size scaring;
D O I
10.1016/S0378-4371(97)00166-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion on a T fractal lattice under the influence of topological biasing fields is studied by finite size scaling methods. This allows to avoid proliferation and singularities which would arise in a renormalization group approach on infinite system as a consequence of logarithmic diffusion. Within the scheme, logarithmic diffusion is proved on the basis of an analysis of various temporal scales such as first passage time moments and survival probability characteristic time. This confirms and puts on firmer basis previous renormalization group results. A careful study of the asymptotic occupation probabilities of different kinds of lattice points allows to elucidate the mechanism of trapping into dangling ends, which is responsible of the logarithmic time dependence of average displacement.
引用
收藏
页码:453 / 468
页数:16
相关论文
共 50 条
  • [21] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [22] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [23] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [24] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [25] MAGNETIZATIONS FROM FINITE-SIZE SCALING
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L675 - L683
  • [26] Finite-size scaling in anisotropic systems
    Tonchev, N. S.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [27] Finite-size scaling in complex networks
    Hong, Hyunsuk
    Ha, Meesoon
    Park, Hyunggyu
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [28] Finite-size scaling of critical avalanches
    Yadav, Avinash Chand
    Quadir, Abdul
    Jafri, Haider Hasan
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [29] Disorder averaging and finite-size scaling
    Bernardet, K
    Pázmándi, F
    Batrouni, GG
    PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4477 - 4480
  • [30] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667