Simulating Solar Coronal Mass Ejections Constrained by Observations of Their Speed and Poloidal Flux

被引:11
|
作者
Singh, T. [1 ]
Yalim, M. S. [2 ]
Pogorelov, N. V. [1 ,2 ]
Gopalswamy, N. [3 ]
机构
[1] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA
[2] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
magnetohydrodynamics (MHD); methods: data analysis; methods: numerical; solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); CME; RECONSTRUCTION; MODEL; WIND; FLOW;
D O I
10.3847/2041-8213/ab14e9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi-Scale Fluid-Kinetic Simulation Suite has been used to simulate the propagation of a CME in a data-driven solar corona background computed using the photospheric magnetogram data. We constrain the CME model parameters using the observations of such key CME properties as its speed, orientation, and poloidal flux. The speed and orientation are estimated using multi-viewpoint white-light coronagraph images. The reconnected magnetic flux in the area covered by the post-eruption arcade is used to estimate the poloidal flux in the CME flux rope. We simulate the partial halo CME on 2011 March 7 to demonstrate the efficiency of our approach. This CME erupted with the speed of 812 km s(-1) and its poloidal flux, as estimated from source active region data, was 4.9 x 10(21) Mx. Using our approach, we were able to simulate this CME with the speed 840 km s(-1) and the poloidal flux of 5.1 x 10(21) Mx, in remarkable agreement with the observations.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] DRIVING CURRENTS FOR FLUX ROPE CORONAL MASS EJECTIONS
    Subramanian, Prasad
    Vourlidas, Angelos
    ASTROPHYSICAL JOURNAL, 2009, 693 (02) : 1219 - 1222
  • [32] Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation
    Aarnio, A. N.
    Stassun, K. G.
    Hughes, W. J.
    McGregor, S. L.
    SOLAR PHYSICS, 2011, 268 (01) : 195 - 212
  • [33] Quantifying the Toroidal Flux of Preexisting Flux Ropes of Coronal Mass Ejections
    Xing, C.
    Cheng, X.
    Qiu, Jiong
    Hu, Qiang
    Priest, E. R.
    Ding, M. D.
    ASTROPHYSICAL JOURNAL, 2020, 889 (02)
  • [34] A COMPARISON OF THE INITIAL SPEED OF CORONAL MASS EJECTIONS WITH THE MAGNETIC FLUX AND MAGNETIC HELICITY OF MAGNETIC CLOUDS
    Sung, S. -K.
    Marubashi, K.
    Cho, K. -S.
    Kim, Y. -H.
    Kim, K. -H.
    Chae, J.
    Moon, Y. -J.
    Kim, I. -H.
    ASTROPHYSICAL JOURNAL, 2009, 699 (01) : 298 - 304
  • [35] Radial Speed Evolution of Interplanetary Coronal Mass Ejections During Solar Cycle 23
    Iju, T.
    Tokumaru, M.
    Fujiki, K.
    SOLAR PHYSICS, 2013, 288 (01) : 331 - 353
  • [36] Observations of core fallback during coronal mass ejections
    Wang, YM
    Sheeley, NR
    ASTROPHYSICAL JOURNAL, 2002, 567 (02) : 1211 - 1224
  • [37] Relating white light and in situ observations of coronal mass ejections: A review
    Rouillard, A. P.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (10) : 1201 - 1213
  • [38] A comparison of the formation and evolution of magnetic flux ropes in solar coronal mass ejections and magnetotail plasmoids
    Linton, M. G.
    Moldwin, M. B.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [39] Ulysses observations of the magnetic connectivity between coronal mass ejections and the sun
    Riley, P
    Gosling, JT
    Crooker, NU
    ASTROPHYSICAL JOURNAL, 2004, 608 (02) : 1100 - 1105
  • [40] Interplanetary Coronal Mass Ejections Observed by Ulysses Through Its Three Solar Orbits
    Du, D.
    Zuo, P. B.
    Zhang, X. X.
    SOLAR PHYSICS, 2010, 262 (01) : 171 - 190