Simulating Solar Coronal Mass Ejections Constrained by Observations of Their Speed and Poloidal Flux

被引:11
|
作者
Singh, T. [1 ]
Yalim, M. S. [2 ]
Pogorelov, N. V. [1 ,2 ]
Gopalswamy, N. [3 ]
机构
[1] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA
[2] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
magnetohydrodynamics (MHD); methods: data analysis; methods: numerical; solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); CME; RECONSTRUCTION; MODEL; WIND; FLOW;
D O I
10.3847/2041-8213/ab14e9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi-Scale Fluid-Kinetic Simulation Suite has been used to simulate the propagation of a CME in a data-driven solar corona background computed using the photospheric magnetogram data. We constrain the CME model parameters using the observations of such key CME properties as its speed, orientation, and poloidal flux. The speed and orientation are estimated using multi-viewpoint white-light coronagraph images. The reconnected magnetic flux in the area covered by the post-eruption arcade is used to estimate the poloidal flux in the CME flux rope. We simulate the partial halo CME on 2011 March 7 to demonstrate the efficiency of our approach. This CME erupted with the speed of 812 km s(-1) and its poloidal flux, as estimated from source active region data, was 4.9 x 10(21) Mx. Using our approach, we were able to simulate this CME with the speed 840 km s(-1) and the poloidal flux of 5.1 x 10(21) Mx, in remarkable agreement with the observations.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Energetics of solar coronal mass ejections
    Subramanian, P.
    Vourlidas, A.
    ASTRONOMY & ASTROPHYSICS, 2007, 467 (02) : 685 - 693
  • [22] SOLAR CORONAL MASS EJECTIONS AND FLARES
    HARRISON, RA
    ASTRONOMY & ASTROPHYSICS, 1986, 162 (1-2): : 283 - 291
  • [23] A model for solar coronal mass ejections
    Antiochos, SK
    DeVore, CR
    Klimchuk, JA
    ASTROPHYSICAL JOURNAL, 1999, 510 (01): : 485 - 493
  • [24] Solar mass ejections and coronal holes
    Bhatnagar, A
    ASTROPHYSICS AND SPACE SCIENCE, 1996, 243 (01) : 105 - 112
  • [25] Periodicities in solar coronal mass ejections
    Lou, YQ
    Wang, YM
    Fan, ZH
    Wang, S
    Wang, JX
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 345 (03) : 809 - 818
  • [26] Energetics of solar coronal mass ejections
    Subramanian, P.
    Vourlidas, A.
    Astronomy and Astrophysics, 2007, 467 (02): : 685 - 693
  • [27] Observations of an emerging flux region surge: Implications for coronal mass ejections triggered by emerging flux
    Liu, Y
    Su, JT
    Morimoto, T
    Kurokawa, H
    Shibata, K
    ASTROPHYSICAL JOURNAL, 2005, 628 (02): : 1056 - 1060
  • [28] The flux rope nature of coronal mass ejections
    Vourlidas, Angelos
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (06)
  • [29] CORONAL MASS EJECTIONS AND THE SOLAR CYCLE VARIATION OF THE SUN'S OPEN FLUX
    Wang, Y. -M.
    Sheeley, N. R., Jr.
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 809 (02)
  • [30] Solar Mass Ejection Imager (SMEI) observations of coronal mass ejections (CMEs) in the heliosphere
    Webb, D. F.
    Mizuno, D. R.
    Buffington, A.
    Cooke, M. P.
    Eyles, C. J.
    Fry, C. D.
    Gentile, L. C.
    Hick, P. P.
    Holladay, P. E.
    Howard, T. A.
    Hewitt, J. G.
    Jackson, B. V.
    Johnston, J. C.
    Kuchar, T. A.
    Mozer, J. B.
    Price, S.
    Radick, R. R.
    Simnett, G. M.
    Tappin, S. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A12)