Simulating Solar Coronal Mass Ejections Constrained by Observations of Their Speed and Poloidal Flux

被引:12
作者
Singh, T. [1 ]
Yalim, M. S. [2 ]
Pogorelov, N. V. [1 ,2 ]
Gopalswamy, N. [3 ]
机构
[1] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA
[2] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
magnetohydrodynamics (MHD); methods: data analysis; methods: numerical; solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); CME; RECONSTRUCTION; MODEL; WIND; FLOW;
D O I
10.3847/2041-8213/ab14e9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi-Scale Fluid-Kinetic Simulation Suite has been used to simulate the propagation of a CME in a data-driven solar corona background computed using the photospheric magnetogram data. We constrain the CME model parameters using the observations of such key CME properties as its speed, orientation, and poloidal flux. The speed and orientation are estimated using multi-viewpoint white-light coronagraph images. The reconnected magnetic flux in the area covered by the post-eruption arcade is used to estimate the poloidal flux in the CME flux rope. We simulate the partial halo CME on 2011 March 7 to demonstrate the efficiency of our approach. This CME erupted with the speed of 812 km s(-1) and its poloidal flux, as estimated from source active region data, was 4.9 x 10(21) Mx. Using our approach, we were able to simulate this CME with the speed 840 km s(-1) and the poloidal flux of 5.1 x 10(21) Mx, in remarkable agreement with the observations.
引用
收藏
页数:6
相关论文
共 33 条
[11]   DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL [J].
Jin, M. ;
Manchester, W. B. ;
van der Holst, B. ;
Sokolov, I. ;
Toth, G. ;
Mullinix, R. E. ;
Taktakishvili, A. ;
Chulaki, A. ;
Gombosi, T. I. .
ASTROPHYSICAL JOURNAL, 2017, 834 (02)
[12]   GLOBAL TRENDS OF CME DEFLECTIONS BASED ON CME AND SOLAR PARAMETERS [J].
Kay, C. ;
Opher, M. ;
Evans, R. M. .
ASTROPHYSICAL JOURNAL, 2015, 805 (02)
[13]   MERIDIONAL FLOW OF SMALL PHOTOSPHERIC MAGNETIC FEATURES [J].
KOMM, RW ;
HOWARD, RF ;
HARVEY, JW .
SOLAR PHYSICS, 1993, 147 (02) :207-223
[14]   TORSIONAL OSCILLATION PATTERNS IN PHOTOSPHERIC MAGNETIC FEATURES [J].
KOMM, RW ;
HOWARD, RF ;
HARVEY, JW .
SOLAR PHYSICS, 1993, 143 (01) :19-39
[15]  
Kulikovskii A.G., 2001, Mathematical Aspects of Numerical Solution of Hyperbolic Systems
[16]   The Physical Processes of CME/ICME Evolution [J].
Manchester, Ward ;
Kilpua, Emilia K. J. ;
Liu, Ying D. ;
Lugaz, Noe ;
Riley, Pete ;
Torok, Tibor ;
Vrsnak, Bojan .
SPACE SCIENCE REVIEWS, 2017, 212 (3-4) :1159-1219
[17]   Modeling a space weather event from the Sun to the Earth:: CME generation and interplanetary propagation -: art. no. A02107 [J].
Manchester, WB ;
Gombosi, TI ;
Roussev, I ;
Ridley, A ;
De Zeeuw, DL ;
Sokolov, IV ;
Powell, KG ;
Tóth, G .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A2)
[18]   Three-dimensional MHD simulation of a flux rope driven CME -: art. no. A01102 [J].
Manchester, WB ;
Gombosi, TI ;
Roussev, I ;
De Zeeuw, DL ;
Sokolov, IV ;
Powell, KG ;
Tóth, G ;
Opher, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A1)
[19]   Development of the 3-D MHD model of the solar corona-solar wind combining system [J].
Nakamizo, A. ;
Tanaka, T. ;
Kubo, Y. ;
Kamei, S. ;
Shimazu, H. ;
Shinagawa, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[20]   Three-dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow 1. CME launched within the streamer [J].
Odstrcil, D ;
Pizzo, VJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A1) :483-492