Simulating Solar Coronal Mass Ejections Constrained by Observations of Their Speed and Poloidal Flux

被引:12
作者
Singh, T. [1 ]
Yalim, M. S. [2 ]
Pogorelov, N. V. [1 ,2 ]
Gopalswamy, N. [3 ]
机构
[1] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA
[2] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
magnetohydrodynamics (MHD); methods: data analysis; methods: numerical; solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); CME; RECONSTRUCTION; MODEL; WIND; FLOW;
D O I
10.3847/2041-8213/ab14e9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi-Scale Fluid-Kinetic Simulation Suite has been used to simulate the propagation of a CME in a data-driven solar corona background computed using the photospheric magnetogram data. We constrain the CME model parameters using the observations of such key CME properties as its speed, orientation, and poloidal flux. The speed and orientation are estimated using multi-viewpoint white-light coronagraph images. The reconnected magnetic flux in the area covered by the post-eruption arcade is used to estimate the poloidal flux in the CME flux rope. We simulate the partial halo CME on 2011 March 7 to demonstrate the efficiency of our approach. This CME erupted with the speed of 812 km s(-1) and its poloidal flux, as estimated from source active region data, was 4.9 x 10(21) Mx. Using our approach, we were able to simulate this CME with the speed 840 km s(-1) and the poloidal flux of 5.1 x 10(21) Mx, in remarkable agreement with the observations.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Eruptive event generator based on the Gibson-Low magnetic configuration [J].
Borovikov, D. ;
Sokolov, I. V. ;
Manchester, W. B. ;
Jin, M. ;
Gombosi, T. I. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (08) :7979-7984
[2]  
BOROVIKOV D, 2018, APJ, V864, DOI DOI 10.3847/1538-4357/AAD68D
[3]   EMPIRICAL RELATIONSHIP BETWEEN INTERPLANETARY CONDITIONS AND DST [J].
BURTON, RK ;
MCPHERRON, RL ;
RUSSELL, CT .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1975, 80 (31) :4204-4214
[4]   On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks [J].
Chané, E ;
Jacobs, C ;
Van der Holst, B ;
Poedts, S ;
Kimpe, D .
ASTRONOMY & ASTROPHYSICS, 2005, 432 (01) :331-339
[5]   A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection [J].
Gibson, SE ;
Low, BC .
ASTROPHYSICAL JOURNAL, 1998, 493 (01) :460-473
[6]  
Gopalswamy N, 2013, SOL PHYS, V284, P1, DOI 10.1007/s11207-013-0280-1
[7]  
Gopalswamy N, 2013, ADSPR, V51, P11
[8]  
GOPALSWAMY N, 2017, SOPH, V292, DOI DOI 10.1007/S11207-017-1080-9
[9]  
HOWARD RA, 2018, SOPH, V293, DOI DOI 10.1007/S11207-018-1274-9
[10]   CHROMOSPHERE TO 1 au SIMULATION OF THE 2011 MARCH 7th EVENT: A COMPREHENSIVE STUDY OF CORONAL MASS EJECTION PROPAGATION [J].
Jin, M. ;
Manchester, W. B. ;
van der Holst, B. ;
Sokolov, I. ;
Toth, G. ;
Vourlidas, A. ;
de Koning, C. A. ;
Gombosi, T. I. .
ASTROPHYSICAL JOURNAL, 2017, 834 (02)