Resampling to Address the Winner's Curse in Genetic Association Analysis of Time to Event

被引:10
作者
Poirier, Julia G. [1 ]
Faye, Laura L. [1 ,2 ]
Dimitromanolakis, Apostolos [1 ]
Paterson, Andrew D. [2 ,3 ]
Sun, Lei [2 ,4 ]
Bull, Shelley B. [1 ,2 ]
机构
[1] Mt Sinai Hosp, Lunenfeld Tanenbaum Res Inst, Toronto, ON M5T 3L9, Canada
[2] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[3] Hosp Sick Children, Res Inst, Toronto, ON M5G 1X8, Canada
[4] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
关键词
bootstrap; cohort studies; DCCT; EDIC Genetics Study; genotype; phenotype; selection bias; survival analysis; ODDS RATIOS; SELECTION BIAS; GENOMEWIDE; BOOTSTRAP; DESIGN; HEALTH; SCANS;
D O I
10.1002/gepi.21920
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The winner's curse is a subtle and difficult problem in interpretation of genetic association, in which association estimates from large-scale gene detection studies are larger in magnitude than those from subsequent replication studies. This is practically important because use of a biased estimate from the original study will yield an underestimate of sample size requirements for replication, leaving the investigators with an underpowered study. Motivated by investigation of the genetics of type 1 diabetes complications in a longitudinal cohort of participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Genetics Study, we apply a bootstrap resampling method in analysis of time to nephropathy under a Cox proportional hazards model, examining 1,213 single-nucleotide polymorphisms (SNPs) in 201 candidate genes custom genotyped in 1,361 white probands. Among 15 top-ranked SNPs, bias reduction in log hazard ratio estimates ranges from 43.1% to 80.5%. In simulation studies based on the observed DCCT/EDIC genotype data, genome-wide bootstrap estimates for false-positive SNPs and for true-positive SNPs with low-to-moderate power are closer to the true values than uncorrected naive estimates, but tend to overcorrect SNPs with high power. This bias-reduction technique is generally applicable for complex trait studies including quantitative, binary, and time-to-event traits.
引用
收藏
页码:518 / 528
页数:11
相关论文
共 27 条
  • [1] Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy
    Al-Kateb, Hussam
    Boright, Andrew P.
    Mirea, Lucia
    Xie, Xinlei
    Sutradhar, Rinku
    Mowjoodi, Afireza
    Bharaj, Bhupinder
    Liu, Michelle
    Bucksa, Jean M.
    Arends, Valerie L.
    Steffes, Michael W.
    Cleary, Patricia A.
    Sun, Wanjie
    Lachin, John M.
    Thorner, Paul S.
    Ho, Michael
    McKnight, Amy Jayne
    Maxwell, A. Peter
    Savage, David A.
    Kidd, Kenneth K.
    Kidd, Judith R.
    Speed, William C.
    Trevor, J. Orchard
    Miller, Rachel G.
    Sun, Lei
    Bull, Shelley B.
    Paterson, Andrew D.
    [J]. DIABETES, 2008, 57 (01) : 218 - 228
  • [2] [Anonymous], ORIGINAL SPLUSR PORT
  • [3] [Anonymous], DOCUMENTATION BR2
  • [4] [Anonymous], AM SOC HUM GEN 54 AN
  • [5] Generating survival times to simulate Cox proportional hazards models
    Bender, R
    Augustin, T
    Blettner, M
    [J]. STATISTICS IN MEDICINE, 2005, 24 (11) : 1713 - 1723
  • [6] The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports
    Cupples, L. Adrienne
    Arruda, Heather T.
    Benjamin, Emelia J.
    D'Agostino, Ralph B., Sr.
    Demissie, Serkalem
    DeStefano, Anita L.
    Dupuis, Josee
    Falls, Kathleen M.
    Fox, Caroline S.
    Gottlieb, Daniel J.
    Govindaraju, Diddahally R.
    Guo, Chao-Yu
    Heard-Costa, Nancy L.
    Hwang, Shih-Jen
    Kathiresan, Sekar
    Kiel, Douglas P.
    Laramie, Jason M.
    Larson, Martin G.
    Levy, Daniel
    Liu, Chun-Yu
    Lunetta, Kathryn L.
    Mailman, Matthew D.
    Manning, Alisa K.
    Meigs, James B.
    Murabito, Joanne M.
    Newton-Cheh, Christopher
    O'Connor, George T.
    O'Donnell, Christopher J.
    Pandey, Mona
    Seshadri, Sudha
    Vasan, Ramachandran S.
    Wang, Zhen Y.
    Wilk, Jemma B.
    Wolf, Philip A.
    Yang, Qiong
    Atwood, Larry D.
    [J]. BMC MEDICAL GENETICS, 2007, 8
  • [7] Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification
    Faye, Laura L.
    Machiela, Mitchell J.
    Kraft, Peter
    Bull, Shelley B.
    Sun, Lei
    [J]. PLOS GENETICS, 2013, 9 (08):
  • [8] A flexible genome-wide bootstrap method that accounts for ranking- and threshold-selection bias in GWAS interpretation and replication study design
    Faye, Laura L.
    Sun, Lei
    Dimitromanolakis, Apostolos
    Bull, Shelley B.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (15) : 1898 - 1912
  • [9] Genuth S, 1999, DIABETES CARE, V22, P99
  • [10] Estimating odds ratios in genome scans: An approximate conditional likelihood approach
    Ghosh, Arpita
    Zou, Fei
    Wright, Fred A.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (05) : 1064 - 1074