On the influence of spectral calibration in hyperspectral image classification of leaves

被引:0
作者
Castro, Rodrigo [1 ]
Ochoa, Daniel [1 ]
Criollo, Ronald [1 ]
机构
[1] ESPOL, Escuela Super Politecn Litoral, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador
来源
2017 CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON) | 2017年
关键词
Hyperspectral Imaging; Spectral Vegetation Indexes; Spectral Calibration; VEGETATION INDEXES; LOW-COST; PREDICTION; SYSTEM; WATER;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic detection of physiological changes in leaves using close range hyperspectral data is becoming a new tool for biologists. Given the geometry of leaves, the reliability of spectral data strongly depends on a careful spectral and geometric calibrations. In this paper, we evaluate the effect of several calibration approaches on automatic classification of leave regions. For our experiments we employ an in-vivo leaf scanning system, then an unsupervised classifier is applied on each calibrated and non-calibrated image and the biological relevance of the output is evaluated using vegetative indexes. Finally, we make recommendations about how to improve the hyperspectral image processing pipeline for this kind of data sets.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Mixture of Spectral Generative Adversarial Networks for Imbalanced Hyperspectral Image Classification
    Dam, Tanmoy
    Anavatti, Sreenatha G.
    Abbass, Hussein A.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] MultiScale spectral-spatial convolutional transformer for hyperspectral image classification
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    IET IMAGE PROCESSING, 2024, 18 (13) : 4328 - 4340
  • [23] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Automated Hyperspectral Image Classification Using Spatial-Spectral Features
    Dhok, Shivani
    Bhurane, Ankit
    Kothari, Ashwin
    2019 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2019, : 184 - 189
  • [25] Spatial-Spectral Involution MLP Network for Hyperspectral Image Classification
    Shao, Yihao
    Liu, Jianjun
    Yang, Jinlong
    Wu, Zebin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 9293 - 9310
  • [26] Spectral Feature Fusion Networks With Dual Attention for Hyperspectral Image Classification
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] A Lightweight Spectral-Spatial Convolution Module for Hyperspectral Image Classification
    Meng, Zhe
    Jiao, Licheng
    Liang, Miaomiao
    Zhao, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] A Unified Multiview Spectral Feature Learning Framework for Hyperspectral Image Classification
    Li, Xian
    Gu, Yanfeng
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] WaveFormer: Spectral-Spatial Wavelet Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Ghous, Usman
    Usama, Muhammad
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [30] Adversarially Robust Hyperspectral Image Classification via Random Spectral Sampling and Spectral Shape Encoding
    Park, Sungjune
    Lee, Hong Joo
    Ro, Yong Man
    IEEE ACCESS, 2021, 9 : 66791 - 66804