On the influence of spectral calibration in hyperspectral image classification of leaves

被引:0
|
作者
Castro, Rodrigo [1 ]
Ochoa, Daniel [1 ]
Criollo, Ronald [1 ]
机构
[1] ESPOL, Escuela Super Politecn Litoral, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador
来源
2017 CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON) | 2017年
关键词
Hyperspectral Imaging; Spectral Vegetation Indexes; Spectral Calibration; VEGETATION INDEXES; LOW-COST; PREDICTION; SYSTEM; WATER;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic detection of physiological changes in leaves using close range hyperspectral data is becoming a new tool for biologists. Given the geometry of leaves, the reliability of spectral data strongly depends on a careful spectral and geometric calibrations. In this paper, we evaluate the effect of several calibration approaches on automatic classification of leave regions. For our experiments we employ an in-vivo leaf scanning system, then an unsupervised classifier is applied on each calibrated and non-calibrated image and the biological relevance of the output is evaluated using vegetative indexes. Finally, we make recommendations about how to improve the hyperspectral image processing pipeline for this kind of data sets.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The Influence of Image Degradation on Hyperspectral Image Classification
    Li, Congyu
    Li, Zhen
    Liu, Xinxin
    Li, Shutao
    REMOTE SENSING, 2022, 14 (20)
  • [2] Design of spectral channels for hyperspectral image classification
    Serpico, SB
    D'Inca, M
    Moser, G
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 956 - 959
  • [3] Local and Global Spectral Features for Hyperspectral Image Classification
    Xu, Zeyu
    Su, Cheng
    Wang, Shirou
    Zhang, Xiaocan
    REMOTE SENSING, 2023, 15 (07)
  • [4] Hyperspectral Image Classification using Spectral Angle Mapper
    Chakravarty, Sujata
    Paikaray, Bijay Kumar
    Mishra, Rutuparnna
    Dash, Satyabrata
    2021 IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE), 2022, : 87 - 90
  • [5] SPECTRAL REGRESSION DISCRIMINANT ANALYSIS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pan, Yinsong
    Wu, Junyuan
    Huang, Hong
    Liu, Jiamin
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 503 - 508
  • [6] Spectral group attention networks for hyperspectral image classification
    Li, Zhengtao
    Wang, Zhongyang
    Xu, Hai
    Zhang, Yaozong
    Zhang, Tianxu
    MIPPR 2019: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2020, 11428
  • [7] Fast Spectral Clustering for Unsupervised Hyperspectral Image Classification
    Zhao, Yang
    Yuan, Yuan
    Wang, Qi
    REMOTE SENSING, 2019, 11 (04)
  • [8] Pooled hybrid-spectral for hyperspectral image classification
    Banerjee, Anasua
    Banik, Debajyoty
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 10887 - 10899
  • [9] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [10] Spectral–Spatial Hyperspectral Image Classification Based on KNN
    Huang K.
    Li S.
    Kang X.
    Fang L.
    Sensing and Imaging, 2016, 17 (01): : 1 - 13