THE ISOPERIMETRIC PROBLEM ON PLANES WITH DENSITY

被引:36
作者
Carroll, Colin [3 ]
Jacob, Adam [2 ]
Quinn, Conor [3 ]
Walters, Robin [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
基金
美国国家科学基金会;
关键词
isoperimetric problem; planes with density; Gauss plane;
D O I
10.1017/S000497270800052X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the isoperimetric problem in planes with density. In particular, we examine planes with generalized curvature zero. We solve the isoperimetric problem on the plane with density e(x), as well as on the plane with density r(p) for p < 0. The Appendix provides a proof by Robert Bryant that the Gauss plane has a unique closed geodesic.
引用
收藏
页码:177 / 197
页数:21
相关论文
共 9 条
[1]  
[Anonymous], 1998, RIEMANNIAN GEOMETRY
[2]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[3]  
COHN H, 1967, CONFORMAL MAPPING RI
[4]  
CORWIN I, 2006, ROSE HULMAN MATH J, V7
[5]   Regularity of isoperimetric hypersurfaces in Riemannian manifolds [J].
Morgan, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) :5041-5052
[6]  
MORGAN F., 2008, GEOMETRIC MEASURE TH
[7]  
Morgan F., 2005, NOT AM MATH SOC, V52, P853
[8]  
MORGAN F., 2006, KODAI MATH J, V29, P455
[9]   On the isoperimetric problem in Euclidean space with density [J].
Rosales, Cesar ;
Canete, Antonio ;
Bayle, Vincent ;
Morgan, Frank .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (01) :27-46