Collision-free and crossing-free trajectory design for second-order agents persistent monitoring

被引:1
作者
Zhao, Ming-Jie [1 ,2 ]
Yang, Wu [1 ,2 ,4 ]
Wang, Yan-Wu [1 ,2 ,3 ]
Xiao, Jiang-Wen [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan, Peoples R China
[3] China Three Gorges Univ, Hubei Prov Collaborat Innovat Ctr New Energy Micr, Yichang, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan 430074, Hubei, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2020年 / 357卷 / 13期
基金
中国国家自然科学基金;
关键词
SENSOR NETWORKS; COVERAGE; TRACKING; TARGET;
D O I
10.1016/j.jfranklin.2020.04.046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we utilize second-order agents to address a one-dimensional persistent monitoring problem with potential agent collision and boundary-crossing problems. The objective is to minimize a sum of accumulated performance metric associated with targets over a finite time horizon by controlling the movements of agents. Different from the existing work where a collision avoidance algorithm is designed for avoiding collisions and boundary crossings, we consider these problems at the beginning of the problem formulation and further utilize Exterior Point Method (EPM) to propose a novel combinatorial objective function which guarantees a collision-free and crossing-free solution by penalizing all possible agents collisions and boundary crossings. According to Pontryagin Minimum Principle (PMP), we show that the optimal agent trajectories can be fully described by some parameters. Based on Infinitesimal Perturbation Analysis (IPA), a standard gradient descent method is proposed to obtain the optimal parameters. Our collision-free and crossing-free approach is computationally efficient as compared to the existing algorithm. Numerical examples are included to demonstrate the effectiveness of the proposed methods. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8726 / 8743
页数:18
相关论文
共 30 条
  • [1] da Silva LCB, 2017, PROC IEEE INT SYMP, P1153, DOI 10.1109/ISIE.2017.8001408
  • [2] Boyd S., 2004, CONVEX OPTIMIZATION
  • [3] Bryson A.E., 2018, Applied optimal control: optimization, estimation and control
  • [4] An Optimal Control Approach to the Multi-Agent Persistent Monitoring Problem
    Cassandras, Christos. G.
    Lin, Xuchao
    Ding, Xuchu
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (04) : 947 - 961
  • [5] Cassandras CG, 2012, IEEE DECIS CONTR P, P2795, DOI 10.1109/CDC.2012.6426992
  • [6] Cassandras CG, 2011, IEEE DECIS CONTR P, P2907, DOI 10.1109/CDC.2011.6160379
  • [7] Perturbation Analysis and Optimization of Stochastic Hybrid Systems
    Cassandras, Christos G.
    Wardi, Yorai
    Panayiotou, Christos G.
    Yao, Chen
    [J]. EUROPEAN JOURNAL OF CONTROL, 2010, 16 (06) : 642 - 661
  • [8] Distributed Optimal Control of Sensor Networks for Dynamic Target Tracking
    Foderaro, Greg
    Zhu, Pingping
    Wei, Hongchuan
    Wettergren, Thomas A.
    Ferrari, Silvia
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (01): : 142 - 153
  • [9] Path planning for cooperative time-optimal information collection
    Klesh, Andrew T.
    Kabamba, Pierre T.
    Girard, Anouck R.
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1991 - 1996
  • [10] Continuous Path Planning for a Data Harvesting Mobile Server
    Le Ny, Jerome
    Dahleh, Munther A.
    Feron, Eric
    Frazzoli, Emilio
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1489 - 1494