Ferromagnetic-Insulator-Based Superconducting Junctions as Sensitive Electron Thermometers

被引:62
作者
Giazotto, F. [1 ,2 ]
Solinas, P. [3 ]
Braggio, A. [3 ,4 ]
Bergeret, F. S. [5 ,6 ]
机构
[1] CNR, NEST Ist Nanosci, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] SPIN CNR, I-16146 Genoa, Italy
[4] INFN Sez Genova, I-16146 Genoa, Italy
[5] Centro Mixto CSIC UPV EHU, Ctr Fis Mat CFM MPC, E-20018 San Sebastian, Spain
[6] DIPC, E-20018 San Sebastian, Spain
基金
欧洲研究理事会;
关键词
Quantum optics - Ferromagnetism - Transfer functions - Ferromagnetic materials - SQUIDs - Temperature measurement;
D O I
10.1103/PhysRevApplied.4.044016
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal-metalferromagnetic- insulator-superconductor junction and explore the possibility of its use as a sensitive thermometer. We investigate the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature-noise performance is obtained in the nonlinear temperature regime for a structure based on an Europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an opencircuit configuration, although the maximal intrinsic temperature sensitivity can achieve 10 nK Hz(-1/2), a realistic amplifying chain will reduce the sensitivity up to 10 mu KHz(-1/2) . To overcome this limitation, we propose a measurement scheme in a closed-circuit configuration based on state-of-the-art superconducting-quantum- interference-device detection technology in an inductive setup. In such a case, we show that temperature-noise can be as low as 35 nK Hz(-1/2). We also discuss a temperature-to-frequency converter where the obtained thermovoltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to approximately 120 GHz and transfer functions up to 200 GHz/K at around 1 K. If operated as an electron thermometer, the device may provide temperature-noise lower than 35 nK Hz(-1/2) thereby being potentially attractive for radiation-sensing applications.
引用
收藏
页数:12
相关论文
共 43 条
[11]   Opportunities for mesoscopics in thermometry and refrigeration:: Physics and applications [J].
Giazotto, F ;
Heikkilä, TT ;
Luukanen, A ;
Savin, AM ;
Pekola, JP .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :217-274
[12]   Very Large Thermophase in Ferromagnetic Josephson Junctions [J].
Giazotto, F. ;
Heikkila, T. T. ;
Bergeret, F. S. .
PHYSICAL REVIEW LETTERS, 2015, 114 (06)
[13]   Proposal for a phase-coherent thermoelectric transistor [J].
Giazotto, F. ;
Robinson, J. W. A. ;
Moodera, J. S. ;
Bergeret, F. S. .
APPLIED PHYSICS LETTERS, 2014, 105 (06)
[14]   Phase-tunable colossal magnetothermal resistance in ferromagnetic Josephson valves [J].
Giazotto, F. ;
Bergeret, F. S. .
APPLIED PHYSICS LETTERS, 2013, 102 (13)
[15]   Ultrasensitive proximity Josephson sensor with kinetic inductance readout [J].
Giazotto, Francesco ;
Heikkila, Tero T. ;
Pepe, Giovanni Piero ;
Helisto, Panu ;
Luukanen, Arttu ;
Pekola, Jukka P. .
APPLIED PHYSICS LETTERS, 2008, 92 (16)
[16]   Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction [J].
Golubev, D ;
Kuzmin, L .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) :6464-6472
[17]   Microwave nanobolometer based on proximity Josephson junctions [J].
Govenius, J. ;
Lake, R. E. ;
Tan, K. Y. ;
Pietila, V. ;
Julin, J. K. ;
Maasilta, I. J. ;
Virtanen, P. ;
Mottonen, M. .
PHYSICAL REVIEW B, 2014, 90 (06)
[18]   SPIN-FILTER EFFECT OF FERROMAGNETIC EUROPIUM SULFIDE TUNNEL BARRIERS [J].
HAO, X ;
MOODERA, JS ;
MESERVEY, R .
PHYSICAL REVIEW B, 1990, 42 (13) :8235-8243
[19]  
James D. Saint-, 1969, PHYS REV LETT
[20]   Efficient electron refrigeration using superconductor/spin-filter devices [J].
Kawabata, Shiro ;
Ozaeta, Asier ;
Vasenko, Andrey S. ;
Hekking, Frank W. J. ;
Sebastian Bergeret, F. .
APPLIED PHYSICS LETTERS, 2013, 103 (03)