Violacein Targets the Cytoplasmic Membrane of Bacteria

被引:69
作者
Cauz, Ana C. G. [2 ]
Carretero, Gustavo P. B. [1 ]
Saraiva, Greice K. V. [1 ]
Park, Peter [1 ]
Mortara, Laura [1 ]
Cuccovia, Iolanda M. [1 ]
Brocchi, Marcelo [2 ]
Gueiros-Filho, Frederico J. [1 ]
机构
[1] Univ Sao Paulo, Inst Quim, Dept Bioquim, Ave Prof Lineu Prestes 748, BR-05508000 Sao Paulo, Brazil
[2] Univ Estadual Campinas, Inst Biol, Dept Genet Evolucao Microbiol & Imunol, Rua Monteiro Lobato 255, BR-13083862 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
violacein; mechanism of action; membrane disruption; membrane-active agent; daptomycin; Staphylococcus aureus; PRECURSOR LIPID II; CHROMOBACTERIUM-VIOLACEUM; STAPHYLOCOCCUS-AUREUS; MECHANISMS; RESISTANCE; INTEGRITY; LIPOGLYCOPEPTIDE; BIOSYNTHESIS; ANTIBIOTICS; METABOLITE;
D O I
10.1021/acsinfecdis.8b00245
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Violacein is a tryptophan-derived purple pigment produced by environmental bacteria, which displays multiple biological activities, including strong inhibition of Gram-positive pathogens, Here, we applied a combination of experimental approaches to identify the mechanism by which violacein kills Gram-positive bacteria. Fluorescence microscopy showed that violacein quickly and dramatically permeabilizes B. subtilis and S. aureus cells. Cell permeabilization was accompanied by the appearance of visible discontinuities or rips in the cytoplasmic membrane, but it did not affect the cell wall. Using in vitro experiments, we showed that violacein binds directly to liposomes made with commercial and bacterial phospholipids and perturbs their structure and permeability. Furthermore, molecular dynamics simulations were employed to reveal how violacein inserts itself into lipid bilayers. Thus, our combined results demonstrate that the cytoplasmic membrane is the primary target of violacein in bacteria. The implications of this finding for the development of violacein as a therapeutic agent are discussed.
引用
收藏
页码:539 / 549
页数:21
相关论文
共 66 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum [J].
Andrighetti-Fröhner, CR ;
Antonio, RV ;
Creczynski-Pasa, TB ;
Barardi, CRM ;
Simoes, CMO .
MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2003, 98 (06) :843-848
[3]  
[Anonymous], 2015, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A10
[4]  
Approved Standard
[5]   Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) [J].
Aruldass, Claira Arul ;
Masalamany, Santhana Raj Louis ;
Venil, Chidambaram Kulandaisamy ;
Ahmad, Wan Azlina .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (06) :5164-5180
[6]   Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity [J].
Aruldass, Claira Arul ;
Rubiyatno ;
Venil, Chidambaram Kulandaisamy ;
Ahmad, Wan Azlina .
RSC ADVANCES, 2015, 5 (64) :51524-51536
[7]   Antibacterial activity of the Antarctic bacterium Janthinobacterium sp SMN 33.6 against multi-resistant Gram-negative bacteria [J].
Asencio, Geraldine ;
Lavin, Paris ;
Alegria, Karen ;
Dominguez, Mariana ;
Bello, Helia ;
Gonzalez-Rocha, Gerardo ;
Gonzalez-Aravena, Marcelo .
ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2014, 17 (01) :1-5
[8]   Oritavancin Disrupts Membrane Integrity of Staphylococcus aureus and Vancomycin-Resistant Enterococci To Effect Rapid Bacterial Killing [J].
Belley, Adam ;
McKay, Geoffrey A. ;
Arhin, Francis F. ;
Sarmiento, Ingrid ;
Beaulieu, Sylvain ;
Fadhil, Ibthihal ;
Parr, Thomas R., Jr. ;
Moeck, Gregory .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (12) :5369-5371
[9]   Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons [J].
Bilsland, Elizabeth ;
Tavella, Tatyana A. ;
Krogh, Renata ;
Stokes, Jamie E. ;
Roberts, Annabelle ;
Ajioka, James ;
Spring, David R. ;
Andricopulo, Adriano D. ;
Costa, Fabio T. M. ;
Oliver, Stephen G. .
BMC BIOTECHNOLOGY, 2018, 18
[10]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911