Na+/K+-ATPase α subunits as new targets in anticancer therapy

被引:61
作者
Mijatovic, Tatjana [2 ]
Ingrassia, Laurent [2 ]
Facchini, Vincenzo [2 ]
Kiss, Robert [1 ]
机构
[1] Free Univ Brussels, Inst Pharm, Toxicol Lab, B-1050 Brussels, Belgium
[2] Unibioscreen SA, Brussels, Belgium
关键词
cardiotonic steroids; Na+/K+-ATPase; new anticancer drugs; new anticancer target; sodium pump targeting; UNBS1450;
D O I
10.1517/14728222.12.11.1403
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: The sodium pump (Na+/K+-ATPase) could be a target for the development of anticancer drugs as it serves as a signal transducer, it is a player in cell adhesion and its aberrant expression and activity are implicated in the development and progression of different cancers. Cardiotonic steroids (CS) are the natural ligands and inhibitors of the sodium pump and this supports the possibility of their development as anticancer agents targeting overexpressed Na+/K+-ATPase alpha subunits. Objectives: To highlight and further develop the concept of using Na+/K+-ATPase alpha 1 and alpha 3 subunits as targets in anticancer therapy and to address the question of the actual usefulness of further developing CS as anticancer agents. Conclusions: Targeting overexpressed Na+/K+-ATPase a subunits using novel CS might open a new era in anticancer therapy and bring the concept of personalized medicine from aspiration to reality. Clinical data are now needed to further support this proposal. Furthermore, future medicinal chemistry should optimize new anticancer CS to target Na+/K+-ATPase alpha subunits with the aim of rendering them more potent and less toxic.
引用
收藏
页码:1403 / 1417
页数:15
相关论文
共 50 条
  • [1] Na+,K+-ATPase as a docking station: protein-protein complexes of the Na+,K+-ATPase
    Reinhard, Linda
    Tidow, Henning
    Clausen, Michael J.
    Nissen, Poul
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2013, 70 (02) : 205 - 222
  • [2] Kinetic studies on Na+/K+-ATPase and inhibition of Na+/K+-ATPase by ATP
    Li, X
    Liu, YW
    Li, J
    Li, HL
    Yang, X
    Wang, CX
    Wang, ZY
    JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, 2004, 19 (04) : 333 - 338
  • [3] Oligosaccharide organization on the β-subunits of pig kidney Na+/K+-ATPase
    Amler, E
    Staffolani, R
    Baranska, J
    Obsil, T
    Urbanova, P
    Bertoli, E
    Mazzanti, L
    PHYSIOLOGICAL RESEARCH, 1997, 46 (06) : 407 - 417
  • [4] Na+,K+-ATPase As a Polyfunctional Protein
    Lopina, O. D.
    Bukach, O., V
    Sidorenko, S., V
    Klimanova, E. A.
    BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY, 2022, 16 (03) : 207 - 216
  • [5] Na+,K+-ATPase as a docking station: protein–protein complexes of the Na+,K+-ATPase
    Linda Reinhard
    Henning Tidow
    Michael J. Clausen
    Poul Nissen
    Cellular and Molecular Life Sciences, 2013, 70 : 205 - 222
  • [6] Insect Na+/K+-ATPase
    Emery, AM
    Billingsley, PF
    Ready, PD
    Djamgoz, MBA
    JOURNAL OF INSECT PHYSIOLOGY, 1998, 44 (3-4) : 197 - 209
  • [7] Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase
    Poulsen, Hanne
    Morth, Preben
    Egebjerg, Jan
    Nissen, Poul
    FEBS LETTERS, 2010, 584 (12) : 2589 - 2595
  • [8] NEW INSIGHTS INTO THE REGULATION OF NA+,K+-ATPASE BY OUABAIN
    Silva, Elisabete
    Soares-da-Silva, Patricio
    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 294, 2012, 294 : 99 - 132
  • [9] Salt, Na+,K+-ATPase and hypertension
    Jaitovich, Ariel
    Bertorello, Alejandro M.
    LIFE SCIENCES, 2010, 86 (3-4) : 73 - 78
  • [10] Na+,K+-ATPase As a Polyfunctional Protein
    O. D. Lopina
    O. V. Bukach
    S. V. Sidorenko
    E. A. Klimanova
    Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2022, 16 : 207 - 216