The formation and electronic structures of 3d transition-metal atoms doped in silicon nanowires

被引:11
作者
Xu, Qiang [1 ,2 ]
Li, Jingbo [1 ]
Li, Shu-Shen [1 ]
Xia, Jian-Bai [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.3000445
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]
引用
收藏
页数:6
相关论文
共 32 条
[1]   Above room temperature ferromagnetism in Mn-ion implanted Si [J].
Bolduc, M ;
Awo-Affouda, C ;
Stollenwerk, A ;
Huang, MB ;
Ramos, FG ;
Agnello, G ;
LaBella, VP .
PHYSICAL REVIEW B, 2005, 71 (03)
[2]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[3]   Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J].
Dietl, T ;
Ohno, H ;
Matsukura, F ;
Cibert, J ;
Ferrand, D .
SCIENCE, 2000, 287 (5455) :1019-1022
[4]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[5]   EXCHANGE INTERACTION OF MANGANESE 3D5 STATES WITH BAND ELECTRONS IN CD1-XMNXTE [J].
GAJ, JA ;
GINTER, J ;
GALAZKA, RR .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1978, 89 (02) :655-662
[6]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[7]   INFLUENCE OF EXCHANGE INTERACTION ON QUANTUM TRANSPORT PHENOMENA IN HG1-XMNXTE [J].
JACZYNSKI, M ;
KOSSUT, J ;
GALAZKA, RR .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1978, 88 (01) :73-85
[8]   Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions [J].
Kitchen, Dale ;
Richardella, Anthony ;
Tang, Jian-Ming ;
Flatte, Michael E. ;
Yazdani, Ali .
NATURE, 2006, 442 (7101) :436-439
[9]   SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS [J].
KOHN, W ;
SHAM, LJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1133-&
[10]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186