Kinetic equation for nonlinear wave-particle interaction: Solution properties and asymptotic dynamics

被引:20
作者
Artemyev, Anton [1 ,2 ,3 ]
Neishtadt, Anatoly [1 ,4 ]
Vasiliev, Alexei [1 ]
机构
[1] Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia
[2] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[4] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
Wave-particle nonlinear interaction; Kinetic equation; Resonances; Distribution function; WHISTLER-MODE WAVES; RESONANT INTERACTIONS; CHORUS EMISSIONS; MAGNETOSPHERE; ELECTRONS; ACCELERATION; TRANSPORT;
D O I
10.1016/j.physd.2018.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a kinetic equation describing evolution of the particle distribution function in a system with nonlinear wave-particle interactions (trappings into resonance and nonlinear scatterings). We study properties of its solutions and show that the only stationary solution is a constant, and that all solutions with smooth initial conditions tend to a constant as time grows. The resulting flattening of the distribution function in the domain of nonlinear interactions is similar to one described by the quasi-linear plasma theory, but the distribution evolves much faster. The results are confirmed numerically for a model problem. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 51 条
[11]   Probabilistic approach to nonlinear wave-particle resonant interaction [J].
Artemyev, A. V. ;
Neishtadt, A. I. ;
Vasiliev, A. A. ;
Mourenas, D. .
PHYSICAL REVIEW E, 2017, 95 (02)
[12]   Kinetic equation for nonlinear resonant wave-particle interaction [J].
Artemyev, A. V. ;
Neishtadt, A. I. ;
Vasiliev, A. A. ;
Mourenas, D. .
PHYSICS OF PLASMAS, 2016, 23 (09)
[13]   Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects [J].
Artemyev, A. V. ;
Vasiliev, A. A. ;
Mourenas, D. ;
Agapitov, O. V. ;
Krasnoselskikh, V. V. .
PHYSICS OF PLASMAS, 2014, 21 (10)
[14]   Oblique Whistler-Mode Waves in the Earth's Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics [J].
Artemyev, Anton ;
Agapitov, Oleksiy ;
Mourenas, Didier ;
Krasnoselskikh, Vladimir ;
Shastun, Vitalii ;
Mozer, Forrest .
SPACE SCIENCE REVIEWS, 2016, 200 (1-4) :261-355
[15]   Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves [J].
Artemyev, Anton V. ;
Neishtadt, Anatoly I. ;
Vasiliev, Alexei A. ;
Mourenas, Didier .
JOURNAL OF PLASMA PHYSICS, 2018, 84 (02)
[16]   Discovery of very large amplitude whistler-mode waves in Earth's radiation belts [J].
Cattell, C. ;
Wygant, J. R. ;
Goetz, K. ;
Kersten, K. ;
Kellogg, P. J. ;
von Rosenvinge, T. ;
Bale, S. D. ;
Roth, I. ;
Temerin, M. ;
Hudson, M. K. ;
Mewaldt, R. A. ;
Wiedenbeck, M. ;
Maksimovic, M. ;
Ergun, R. ;
Acuna, M. ;
Russell, C. T. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (01)
[17]   Ion heating by broadband electromagnetic waves in the magnetosheath and across the magnetopause [J].
Chaston, C. C. ;
Yao, Y. ;
Lin, N. ;
Salem, C. ;
Ueno, G. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (09) :5579-5591
[18]  
Courant R., 1953, METHODS MATH PHYS, V1
[19]   THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere [J].
Cully, C. M. ;
Bonnell, J. W. ;
Ergun, R. E. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (17)
[20]   Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data [J].
Demekhov, A. G. ;
Taubenschuss, U. ;
Santolik, O. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (01) :166-184