A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy

被引:40
作者
Winterhalter, C. [1 ]
Lomax, A. [1 ]
Oxley, D. [1 ]
Weber, D. C. [1 ,2 ,3 ]
Safai, S. [1 ]
机构
[1] Paul Scherrer Inst, Ctr Proton Therapy, CH-5232 Villigen, Switzerland
[2] Univ Hosp Bern, Radiat Oncol Dept, Bern, Switzerland
[3] Univ Hosp Zurich, Radiat Oncol Dept, Zurich, Switzerland
关键词
proton therapy; pencil beam scanning; penumbra; collimation; optimisation; pre-absorber; MONTE-CARLO; DOSE CALCULATION; SPOT SIZE; COLLIMATION; DELIVERY; APERTURE; SYSTEM;
D O I
10.1088/1361-6560/aaa2ad
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.
引用
收藏
页数:14
相关论文
共 29 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
[Anonymous], 1999, J ICRU
[3]   Development and Clinical Implementation of a Universal Bolus to Maintain Spot Size During Delivery of Base of Skull Pencil Beam Scanning Proton Therapy [J].
Both, Stefan ;
Shen, Jiajian ;
Kirk, Maura ;
Lin, Liyong ;
Tang, Shikui ;
Alonso-Basanta, Michelle ;
Lustig, Robert ;
Lin, Haibo ;
Deville, Curtiland ;
Hill-Kayser, Christine ;
Tochner, Zelig ;
McDonough, James .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 (01) :79-84
[4]   Therapeutic step and shoot proton beam spot-scanning with a multi-leaf collimator: A Monte Carlo study [J].
Bues, M ;
Newhauser, WD ;
Titt, U ;
Smith, AR .
RADIATION PROTECTION DOSIMETRY, 2005, 115 (1-4) :164-169
[5]   A Monte Carlo study on the collimation of pencil beam scanning proton therapy beams [J].
Charlwood, Frances C. ;
Aitkenhead, Adam H. ;
Mackay, Ranald I. .
MEDICAL PHYSICS, 2016, 43 (03) :1462-1472
[6]   Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system [J].
Diffenderfer, Eric S. ;
Ainsley, Christopher G. ;
Kirk, Maura L. ;
McDonough, James E. ;
Maughan, Richard L. .
MEDICAL PHYSICS, 2011, 38 (11) :6248-6256
[7]   Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy [J].
Dowdell, Stephen J. ;
Clasie, Benjamin ;
Depauw, Nicolas ;
Metcalfe, Peter ;
Rosenfeld, Anatoly B. ;
Kooy, Hanne M. ;
Flanz, Jacob B. ;
Paganetti, Harald .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (10) :2829-2842
[8]   Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning [J].
Fracchiolla, F. ;
Lorentini, S. ;
Widesott, L. ;
Schwarz, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (21) :8601-8619
[9]   A method for modeling laterally asymmetric proton beamlets resulting from collimation [J].
Gelover, Edgar ;
Wang, Dongxu ;
Hill, Patrick M. ;
Flynn, Ryan T. ;
Gao, Mingcheng ;
Laub, Steve ;
Pankuch, Mark ;
Hyer, Daniel E. .
MEDICAL PHYSICS, 2015, 42 (03) :1321-1334
[10]   Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning [J].
Geng, Changran ;
Moteabbed, Maryam ;
Xie, Yunhe ;
Schuemann, Jan ;
Yock, Torunn ;
Paganetti, Harald .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (01) :12-22