A fluorescence-based optical fiber analyzer for catecholamine determination

被引:7
作者
Silva, Lurdes [1 ,2 ]
Duarte, Katia [3 ]
Freitas, Ana Cristina [3 ]
Panteleitchouk, Teresa S. L. [3 ]
Rocha-Santos, Teresa A. P. [1 ,2 ,3 ]
Pereira, Maria E. [1 ,2 ]
Duarte, Armando Costa [1 ,2 ]
机构
[1] Univ Aveiro, CESAM Ctr Environm & Marine Studies, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Chem, P-3810193 Aveiro, Portugal
[3] ISEITIViseu, Inst Piaget, P-3515776 Lordosa, Viseu, Portugal
关键词
TANDEM MASS-SPECTROMETRY; PERFORMANCE LIQUID-CHROMATOGRAPHY; PLASMA-CATECHOLAMINES; METABOLITES; ELECTROPHORESIS; SEPARATION; BIOSENSOR; DOPAMINE; SAMPLES; URINE;
D O I
10.1039/c2ay25076d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An optical fibre (OF) analyzer for measuring catecholamines (dopamine, norepinephrine and epinephrine) in biological samples with induced fluorescence was developed. The analytical set-up included a chromatographic column for catecholamine separation and a fluorescence-based OF detection (FOF-analyzer). The detection limit of the FOF-analyser was found to be less than 0.9 pg mL(-1). The proposed methodology showed an adequate analytical performance for the determination of the catecholamines in actual samples of human urine. The analytical performance of the FOF-analyzer for catecholamine determination was investigated against the high performance liquid chromatography-electrochemical detection (HPLC-ED) method. The FOF-analyzer showed lower detection limits and larger linear ranges for determination of dopamine (DA), norepinephrine (NE) and epinephrine (E) in comparison with HPLC-ED and other methodologies such as HPLC-fluorescence. These advantages combined with the compact design, small-scale instrumentation, and effective cost of analysis make this system an interesting alternative to the existing methodologies for the determination of catecholamines in clinical samples.
引用
收藏
页码:2300 / 2306
页数:7
相关论文
共 52 条
[41]   Remote optical fibre microsensor for monitoring BTEX in confined industrial atmospheres [J].
Silva, Lurdes I. B. ;
Rocha-Santos, Teresa A. R. ;
Duarte, A. C. .
TALANTA, 2009, 78 (02) :548-552
[42]   Study of catecholamines in patient urine samples by capillary electrophoresis [J].
Sirén, H ;
Karjalainen, U .
JOURNAL OF CHROMATOGRAPHY A, 1999, 853 (1-2) :527-533
[43]  
Southwick S M, 1999, Semin Clin Neuropsychiatry, V4, P242
[44]   Quantitative determination of adrenaline and noradrenaline in urine using liquid chromatography-tandem mass spectrometry [J].
Thomas, A. ;
Geyer, H. ;
Mester, H. J. ;
Schaenzer, W. ;
Zimmermann, E. ;
Thevis, M. .
CHROMATOGRAPHIA, 2006, 64 (9-10) :587-591
[45]   Recent advances in methods for the analysis of catecholamines and their metabolites [J].
Tsunoda, Makoto .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 386 (03) :506-514
[46]   Discovery of Dopamine Glucuronide in Rat and Mouse Brain Microdialysis Samples Using Liquid Chromatography Tandem Mass Spectrometry [J].
Uutela, Paivi ;
Karhu, Laura ;
Piepponen, Petteri ;
Kaenmaki, Mikko ;
Ketola, Raimo A. ;
Kostiainen, Risto .
ANALYTICAL CHEMISTRY, 2009, 81 (01) :427-434
[47]   Determination of catecholamines as their N-hydroxy-succinimidyl-3-indolylacetate derivatives by pre-column derivatization HPLC separation and fluorescent detection [J].
Wang, H ;
Jin, H ;
Zhang, HS .
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1999, 365 (08) :682-684
[48]  
William E. G., 2010, ELECTROPHORESIS, V31, P55
[49]   Fiber-optic chemical sensors and biosensors [J].
Wolfbeis, Otto S. .
ANALYTICAL CHEMISTRY, 2008, 80 (12) :4269-4283
[50]  
Yasuda K., 1995, US. Pat, Patent No. 5378635