A fluorescence-based optical fiber analyzer for catecholamine determination

被引:7
|
作者
Silva, Lurdes [1 ,2 ]
Duarte, Katia [3 ]
Freitas, Ana Cristina [3 ]
Panteleitchouk, Teresa S. L. [3 ]
Rocha-Santos, Teresa A. P. [1 ,2 ,3 ]
Pereira, Maria E. [1 ,2 ]
Duarte, Armando Costa [1 ,2 ]
机构
[1] Univ Aveiro, CESAM Ctr Environm & Marine Studies, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Chem, P-3810193 Aveiro, Portugal
[3] ISEITIViseu, Inst Piaget, P-3515776 Lordosa, Viseu, Portugal
关键词
TANDEM MASS-SPECTROMETRY; PERFORMANCE LIQUID-CHROMATOGRAPHY; PLASMA-CATECHOLAMINES; METABOLITES; ELECTROPHORESIS; SEPARATION; BIOSENSOR; DOPAMINE; SAMPLES; URINE;
D O I
10.1039/c2ay25076d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An optical fibre (OF) analyzer for measuring catecholamines (dopamine, norepinephrine and epinephrine) in biological samples with induced fluorescence was developed. The analytical set-up included a chromatographic column for catecholamine separation and a fluorescence-based OF detection (FOF-analyzer). The detection limit of the FOF-analyser was found to be less than 0.9 pg mL(-1). The proposed methodology showed an adequate analytical performance for the determination of the catecholamines in actual samples of human urine. The analytical performance of the FOF-analyzer for catecholamine determination was investigated against the high performance liquid chromatography-electrochemical detection (HPLC-ED) method. The FOF-analyzer showed lower detection limits and larger linear ranges for determination of dopamine (DA), norepinephrine (NE) and epinephrine (E) in comparison with HPLC-ED and other methodologies such as HPLC-fluorescence. These advantages combined with the compact design, small-scale instrumentation, and effective cost of analysis make this system an interesting alternative to the existing methodologies for the determination of catecholamines in clinical samples.
引用
收藏
页码:2300 / 2306
页数:7
相关论文
共 50 条
  • [1] Quasidistributed fluorescence-based optical fiber temperature sensor system
    Sun, T
    Zhang, ZY
    Grattan, KTV
    Palmer, AW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (01): : 146 - 151
  • [2] Characteristics of doped optical fiber for fluorescence-based fiber optic temperature systems
    Forsyth, DI
    Sun, T
    Grattan, KTV
    Wade, SA
    Collins, SF
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (12): : 5212 - 5218
  • [3] Fluorescence-Based Optical Biosensors
    Ligler, F. S.
    BIOPHOTONICS, 2008, : 199 - 215
  • [4] Determination of Tilmicosin by Fluorescence-Based Immunochromatography
    Wang, Qi
    Pei, Xingyao
    Peng, Tao
    Xie, Jie
    Xie, Sanlei
    Sun, Yuanze
    Wang, Cheng
    Li, Xiangmei
    Jiang, Haiyang
    ANALYTICAL LETTERS, 2016, 49 (13) : 2052 - 2062
  • [5] INSTRUMENTATION FOR FLUORESCENCE-BASED FIBER OPTIC BIOSENSORS
    Thompson, Richard B.
    Zeng, Hui-Hui
    Ohnemus, Daniel
    McCranor, Bryan
    Cramer, Michele
    Moffett, James
    FLUORESCENCE SPECTROSCOPY, 2008, 450 : 311 - 337
  • [6] Determination of local high temperature excursion in an intrinsic doped fiber fluorescence-based sensor
    Sun, T
    Zhang, ZY
    Grattan, KTV
    Palmer, AW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (08): : 2930 - 2934
  • [7] Fluorescence-Based Determination of Agmatine in Dietary Supplements
    Nedeljko, Polonca
    Turel, Matejka
    Lobnik, Aleksandra
    ANALYTICAL LETTERS, 2015, 48 (10) : 1619 - 1628
  • [8] Materials for fluorescence-based optical chemical sensors
    Wolfbeis, OS
    JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (27-28) : 2657 - 2669
  • [9] MULTIDIMENSIONAL FLUORESCENCE-BASED FIBER-OPTIC SENSORS
    BRIGHT, FV
    LITWILER, KS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 196 : 118 - ANYL
  • [10] Fluorescence-based test of fiber-optic continuity
    Norwood, DP
    Vinches, C
    Anderson, JF
    Reed, WF
    APPLIED OPTICS, 1997, 36 (12): : 2529 - 2532