PET Image Denoising Using a Deep Neural Network Through Fine Tuning

被引:181
作者
Gong, Kuang [1 ]
Guan, Jiahui [2 ]
Liu, Chih-Chieh [1 ]
Qi, Jinyi [1 ]
机构
[1] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Convolutional neural network (CNN); fine-tuning; image denoising; perceptual loss; positron emission tomography (PET); WHOLE-BODY PET; TIME-OF-FLIGHT; CT; ENHANCEMENT; PERFORMANCE;
D O I
10.1109/TRPMS.2018.2877644
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Positron emission tomography (PET) is a functional imaging modality widely used in clinical diagnosis. In this paper, we trained a deep convolutional neural network to improve PET image quality. Perceptual loss based on features derived from a pretrained VGG network, instead of the conventional mean squared error, was employed as the training loss function to preserve image details. As the number of real patient data set for training is limited, we propose to pretrain the network using simulation data and fine-tune the last few layers of the network using real data sets. Results from simulation, real brain, and lung data sets show that the proposed method is more effective in removing noise than the traditional Gaussian filtering method.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 2017, arXiv1702.07019
[2]   Twenty new digital brain phantoms for creation of validation image data bases [J].
Aubert-Broche, Berengere ;
Griffin, Mark ;
Pike, G. Bruce ;
Evans, Alan C. ;
Collins, D. Louis .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1410-1416
[3]   Physical Performance of the new hybrid PET/CT Discovery-690 [J].
Bettinardi, V. ;
Presotto, L. ;
Rapisarda, E. ;
Picchio, M. ;
Gianolli, L. ;
Gilardi, M. C. .
MEDICAL PHYSICS, 2011, 38 (10) :5394-5411
[4]   Postreconstruction Nonlocal Means Filtering of Whole-Body PET With an Anatomical Prior [J].
Chan, Chung ;
Fulton, Roger ;
Barnett, Robert ;
Feng, David Dagan ;
Meikle, Steven .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (03) :636-650
[5]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[6]   Dynamic PET Denoising with HYPR Processing [J].
Christian, Bradley T. ;
Vandehey, Nicholas T. ;
Floberg, John M. ;
Mistretta, Charles A. .
JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (07) :1147-1154
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[9]   Non-Local Means Denoising of Dynamic PET Images [J].
Duna, Joyita ;
Leahy, Richard M. ;
Li, Quanzheng .
PLOS ONE, 2013, 8 (12)
[10]   Iterative PET Image Reconstruction Using Convolutional Neural Network Representation [J].
Gong, Kuang ;
Guan, Jiahui ;
Kim, Kyungsang ;
Zhang, Xuezhu ;
Yang, Jaewon ;
Seo, Youngho ;
El Fakhri, Georges ;
Qi, Jinyi ;
Li, Quanzheng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (03) :675-685