Serre's conjecture over F9

被引:15
作者
Ellenberg, JS [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
关键词
D O I
10.4007/annals.2005.161.1111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that an odd Galois representation (p) over bar: Gal((Q) over bar /Q) -> GL(2)(F-9) having nonsolvable image and satisfying certain local conditions at 3 and 5 is modular. Our main tools are ideas of Taylor [21] and Khare [10], which reduce the problem to that of exhibiting points on a Hilbert modular surface which are defined over a solvable extension of Q, and which satisfy certain reduction properties. As a corollary, we show that Hilbert-Blumenthal abelian surfaces with ordinary reduction at 3 and 5 are modular.
引用
收藏
页码:1111 / 1142
页数:32
相关论文
共 24 条
  • [1] Andreatta F, 2005, MEM AM MATH SOC, V173, P1
  • [2] [Anonymous], 1988, HILBERT MODULAR SURF
  • [3] On the modularity of elliptic curves over Q: Wild 3-adic exercises
    Breuil, C
    Conrad, B
    Diamond, F
    Taylor, R
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) : 843 - 939
  • [4] Chai C.-L., 1990, ANN MATH, V131, P541, DOI DOI 10.2307/1971469.MR1053489
  • [5] Remarks on mod-In representations, I=3, 5
    Conrad, B
    Wong, SM
    [J]. JOURNAL OF NUMBER THEORY, 1999, 78 (02) : 253 - 270
  • [6] On deformation rings and Hecke rings
    Diamond, F
    [J]. ANNALS OF MATHEMATICS, 1996, 144 (01) : 137 - 166
  • [7] Ekedahl T., 1990, Seminaire de Theorie des Nombres, V91, P241
  • [8] Ellenberg JS, 2001, J REINE ANGEW MATH, V532, P1
  • [9] HARRIS J, 1992, ALGEBRAIC GEOMETRY
  • [10] HIRZEBRUCH F, 1977, LECT NOTES MATH, V627, P288