An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability

被引:78
作者
Gao, Rui [1 ]
Liang, Xiu [2 ]
Yin, Penggang [2 ]
Wang, Junkai [1 ]
Lee, Yu Lin [3 ]
Hu, Zhongbo [1 ]
Liu, Xiangfeng [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[2] Beihang Univ, Sch Chem & Environm, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ, Beijing, Peoples R China
[3] Imperial Coll London, Royal Sch Mines, Dept Mat, Exhibit Rd, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Li-O-2; battery; Amorphous LiO2; Catalyst; Palladium; Graphene; REDUCED GRAPHENE OXIDE; LITHIUM-AIR BATTERIES; LI-ION BATTERIES; CHARGE-TRANSPORT; SUPEROXIDE; OXYGEN; CATALYSTS; CATHODE; LI2O2; NANOPARTICLES;
D O I
10.1016/j.nanoen.2017.10.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing Li2O2 with LiO2 as the discharge product is a very promising strategy to tackle the problems of high overpotential(similar to 1.5 V), inferior rate capability and short cycle life in the current Li-O-2 batteries based on Li2O2. But it's very difficult to control LiO2 due to its thermodynamic instability. Herein, we have successfully built a facile rechargeable Li-O-2 battery based on the formation and decomposition of amorphous LiO2 with an ultralow overpotential(similar to 0.3 V), long cycle life and high rate capability under the catalysis of 3D-architectured Pd-rGO. In-situ Raman spectrum, linear sweep voltammetry, UV-vis measurements and SAED( Selected Area Electron Diffraction) all have identified the amorphous LiO2-based electrochemical process. Amorphous LiO2 shows a lower oxidation potential and a faster ionic conductivity contributing to the excellent electrochemical performances and the mitigation of undesirable side reactions. This study opens a new horizon to solve the intrinsic problems of the current Li-O-2 batteries.
引用
收藏
页码:535 / 542
页数:8
相关论文
共 41 条
[1]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
[2]  
Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.128, 10.1038/nenergy.2016.128]
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[5]   Li2O2 oxidation: the charging reaction in the aprotic Li-O2 batteries [J].
Cui, Qinghua ;
Zhang, Yelong ;
Ma, Shunchao ;
Peng, Zhangquan .
SCIENCE BULLETIN, 2015, 60 (14) :1227-1234
[6]   Structure and Stability of Lithium Superoxide Clusters and Relevance to Li-O2 Batteries [J].
Das, Ujjal ;
Lau, Kah Chun ;
Redfern, Paul C. ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (05) :813-819
[7]   Nanosize stabilized Li-deficient Li2-xO2 through cathode architecture for high performance Li-O2 batteries [J].
Fan, Wugang ;
Wang, Beizhou ;
Guo, Xiangxin ;
Kong, Xiangyang ;
Liu, Jianjun .
NANO ENERGY, 2016, 27 :577-586
[8]   Nature of Li2O2 Oxidation in a Li-O2 Battery Revealed by Operando X-ray Diffraction [J].
Ganapathy, Swapna ;
Adams, Brian D. ;
Stenou, Georgiana ;
Anastasaki, Maria S. ;
Goubitz, Kees ;
Miao, Xue-Fei ;
Nazar, Linda F. ;
Wagemaker, Marnix .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) :16335-16344
[9]   Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li-O2 battery charging [J].
Gittleson, Forrest S. ;
Ryu, Won-Hee ;
Schwab, Mark ;
Tong, Xiao ;
Taylor, Andre D. .
CHEMICAL COMMUNICATIONS, 2016, 52 (39) :6605-6608
[10]  
Grey CP, 2017, NAT MATER, V16, P45, DOI [10.1038/NMAT4777, 10.1038/nmat4777]