On the cardinality of the θ-closed hull of sets

被引:5
作者
Cammaroto, Filippo [1 ]
Catalioto, Andrei [1 ]
Pansera, Bruno Antonio [1 ]
Tsaban, Boaz [2 ]
机构
[1] Univ Messina, Dipartimento Matemat, I-98166 Messina, Italy
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Urysohn space; n-Urysohn space; Finitely-Urysohn space; Urysohn number; H-closed space; H-set; theta-Closure; theta-Closed hull; theta-Tightness; theta-Bitightness; Finite theta-bitightness; theta-Bitightness small number; theta-Character; Character; Cardinal inequalities; TOPOLOGICAL-SPACE; URYSOHN SPACES; NUMBER;
D O I
10.1016/j.topol.2013.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theta-closed hull of a set A in a topological space is the smallest set C containing A such that, whenever all closed neighborhoods of a point intersect C, this point is in C. We define a new topological cardinal invariant function, the theta-bitightness small number of a space X, bts(0)(X), and prove that in every topological space X, the cardinality of the theta-closed hull of each set A is at most vertical bar A vertical bar(bts theta)(X). Using this result, we synthesize all earlier results on bounds on the cardinality of theta-closed hulls. We provide applications to P-spaces and to the almost-Lindelof number. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2371 / 2378
页数:8
相关论文
共 12 条
  • [1] Alas O.T., 2000, MATH BALKANICA, V14, P247
  • [2] ON THE CARDINALITY OF URYSOHN SPACES
    BELLA, A
    CAMMAROTO, F
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1988, 31 (02): : 153 - 158
  • [3] Bella A., 1996, QUESTIONS ANSWERS TO, V14, P139
  • [4] Bonanzinga M., 2014, QUAEST MATH, V37, P1
  • [5] Bonanzinga M, 2013, HOUSTON J MATH, V39, P1013
  • [6] ON THE URYSOHN NUMBER OF A TOPOLOGICAL SPACE
    Bonanzinga, Maddalena
    Cammaroto, Filippo
    Matveev, Mikhail
    [J]. QUAESTIONES MATHEMATICAE, 2011, 34 (04) : 441 - 446
  • [7] Cammaroto F., 1993, REND CIRC MAT PALE 2, V42, P129
  • [8] Cammaroto F., 1993, FACTA U NIS MI, V8, P77
  • [9] Cammaroto F., 1995, MATH NOTAE, V38, P47
  • [10] McNeill DK, 2010, TOPOL P, V36, P123