RADON TRANSFORM ON SYMMETRIC MATRIX DOMAINS

被引:0
作者
Zhang, Genkai [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, Gothenburg, Sweden
关键词
Radon transform; inverse Radon transform; symmetric domains; Grassmannian manifolds; Lie groups; fractional integrations; Bernstein-Sato formula; Cherednik operators; invariant differential operators; INTEGRAL GEOMETRY; ROOT SYSTEMS; OPERATORS; REAL; REPRESENTATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K = R, C, H be the field of real, complex or quaternionic numbers and M-p,M-q( K) the vector space of all p x q-matrices. Let X be the matrix unit ball in M-n-r,M-r(K) consisting of contractive matrices. As a symmetric space, X = G/K = O(n - r, r)/O( n - r) x O( r), U( n - r, r)/U( n - r) x U( r) and respectively Sp( n - r, r)/Sp( n - r) x Sp( r). The matrix unit ball y(0) in M-r'-r,M-r with r' <= n - 1 is a totally geodesic submanifold of X and let Y be the set of all G-translations of the submanifold y(0). The set Y is then a manifold and an a. ne symmetric space. We consider the Radon transform Rf(y) for functions f is an element of C-0(infinity) (X) defined by integration of f over the subset y, and the dual transform (RF)-F-t(x), x is an element of X for functions F(y) on Y. For 2r < n, 2r <= r' with a certain evenness condition in the case K = R, we find a G-invariant differential operator M and prove it is the right inverse of (RR)-R-t, R(t)RMf = cf, for f is an element of C-0(infinity) (X), c not equal 0. The operator f --> R(t)Rf is an integration of f against a ( singular) function determined by the root systems of X and y(0). We study the analytic continuation of the powers of the function and we find a Bernstein-Sato type formula generalizing earlier work of the author in the set up of the Berezin transform. When X is a rank one domain of hyperbolic balls in Kn-1 and y(0) is the hyperbolic ball in Kr'-1, 1 < r' < n we obtain an inversion formula for the Radon transform, namely MR(t)Rf = cf. This generalizes earlier results of Helgason for non-compact rank one symmetric spaces for the case r' <= n - 1.
引用
收藏
页码:1351 / 1369
页数:19
相关论文
共 50 条
[31]   Radon Transform on a Harmonic Manifold [J].
François Rouvière .
The Journal of Geometric Analysis, 2021, 31 :6365-6385
[32]   On locality of Radon to Riesz transform [J].
Desbat, Laurent ;
Perrier, Valerie .
SIGNAL PROCESSING, 2016, 120 :13-25
[33]   Radon Transform on Sobolev Spaces [J].
V. A. Sharafutdinov .
Siberian Mathematical Journal, 2021, 62 :560-580
[34]   Generalized Radon Transform and X-ray Tomography [J].
Anikonov, D. S. ;
Konovalova, D. S. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 :440-447
[35]   NONUNIQUENESS FOR THE RADON-TRANSFORM [J].
ARMITAGE, DH ;
GOLDSTEIN, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (01) :175-178
[36]   The Radon transform and translation representation [J].
Lax P.D. .
Journal of Evolution Equations, 2001, 1 (3) :311-323
[37]   Mesoopties and circular Radon transform [J].
Kotlyar, VV ;
Kovalev, AA .
Saratov Fall Meeting 2004: Laser Physics and Photonics, Spectroscopy, and Molecular Modeling V, 2005, 5773 :97-105
[38]   Mesooptics and circular Radon transform [J].
Kotlyar, VV ;
Kovalev, AA .
Saratov Fall Meeting 2004: Coherent Optics of Ordered and Random Media V, 2005, 5772 :32-41
[39]   Radon transform for face recognition [J].
Dargham, Jamal ;
Chekima, Ali ;
Moung, Ervin ;
Omatu, Sigeru .
ARTIFICIAL LIFE AND ROBOTICS, 2010, 15 (03) :359-362
[40]   Radon Transform on Sobolev Spaces [J].
Sharafutdinov, V. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (03) :560-580