Parameter Estimation in Factor Analysis: Maximum Likelihood versus Principal Component

被引:14
|
作者
Kassim, Suraiya [1 ]
Hasan, Husna [1 ]
Ismon, Aisyah Mohd [1 ]
Asri, Fahimah Muhammad [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Minden 11800, Penang, Malaysia
来源
PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B | 2013年 / 1522卷
关键词
factor analysis; principal component estimator; maximum likelihood estimator; COMMON FACTOR-ANALYSIS;
D O I
10.1063/1.4801279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Factor analysis (FA) is a multivariate statistical technique to uncover latent constructs of observed variables while principal component analysis (PCA) is a technique to reduce the number of variables in large data sets. While both are different techniques with different objectives, they often produced the same factor solution. In this paper, the multivariate statistical theory behind PCA and FA is discussed to highlight their differences and similarities. In particular, the factor extraction technique of PCA is compared to the extraction procedures of principal axis factoring (PAF) and maximum likelihood estimation (MLE) in factor analysis. Results from applying the procedures on a published data set will be discussed and the appropriate use of each will be suggested.
引用
收藏
页码:1293 / 1299
页数:7
相关论文
共 50 条
  • [41] MAXIMUM LIKELIHOOD ESTIMATION OF A TRANSLATION PARAMETER OF A TRUNCATED DISTRIBUTION
    WEISS, L
    WOLFOWIT.J
    ANNALS OF STATISTICS, 1973, 1 (05): : 944 - 947
  • [42] Maximum likelihood estimation for the drift parameter in diffusion processes
    Wei, Chao
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (05): : 699 - 710
  • [43] Stochastic maximum likelihood method for propagation parameter estimation
    Ribeiro, CB
    Ollila, E
    Koivunen, V
    2004 IEEE 15TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 1839 - 1843
  • [44] Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis
    Congedo, G.
    Ferraioli, L.
    Hueller, M.
    De Marchi, F.
    Vitale, S.
    Armano, M.
    Hewitson, M.
    Nofrarias, M.
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [45] The Fixed-Point Algorithm and Maximum Likelihood Estimation for Independent Component Analysis
    Aapo Hyvärinen
    Neural Processing Letters, 1999, 10 : 1 - 5
  • [46] The fixed-point algorithm and maximum likelihood estimation for independent component analysis
    Hyvärinen, A
    NEURAL PROCESSING LETTERS, 1999, 10 (01) : 1 - 5
  • [47] Maximum likelihood estimation of mixtures of factor analyzers
    Montanari, Angela
    Viroli, Cinzia
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) : 2712 - 2723
  • [48] Resolve overlapping voltammetric peaks by artificial neural networks with maximum likelihood principal component analysis
    Gao, Ling
    Li, Xiaoping
    Ren, Shouxin
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 5, PROCEEDINGS, 2008, : 507 - 511
  • [49] Multicomponent Kinetic Determination Using an Artificial Neural Network with Maximum Likelihood Principal Component Analysis
    Gao, Ling
    Ren, Shouxin
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 469 - 473
  • [50] Optimizing Maximum Likelihood Estimation in Performance Factor Analysis: A Comparative Study of Estimation Methods
    Mehrabi, A.
    Altintas, O.
    Morphew, J. W.
    QUANTITATIVE PSYCHOLOGY, IMPS 2023, 2024, 452 : 223 - 232