Parameter Estimation in Factor Analysis: Maximum Likelihood versus Principal Component

被引:14
|
作者
Kassim, Suraiya [1 ]
Hasan, Husna [1 ]
Ismon, Aisyah Mohd [1 ]
Asri, Fahimah Muhammad [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Minden 11800, Penang, Malaysia
来源
PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B | 2013年 / 1522卷
关键词
factor analysis; principal component estimator; maximum likelihood estimator; COMMON FACTOR-ANALYSIS;
D O I
10.1063/1.4801279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Factor analysis (FA) is a multivariate statistical technique to uncover latent constructs of observed variables while principal component analysis (PCA) is a technique to reduce the number of variables in large data sets. While both are different techniques with different objectives, they often produced the same factor solution. In this paper, the multivariate statistical theory behind PCA and FA is discussed to highlight their differences and similarities. In particular, the factor extraction technique of PCA is compared to the extraction procedures of principal axis factoring (PAF) and maximum likelihood estimation (MLE) in factor analysis. Results from applying the procedures on a published data set will be discussed and the appropriate use of each will be suggested.
引用
收藏
页码:1293 / 1299
页数:7
相关论文
共 50 条
  • [21] On maximum likelihood estimation in factor analysis-An algebraic derivation
    Stoica, Petre
    Jansson, Magnus
    SIGNAL PROCESSING, 2009, 89 (06) : 1260 - 1262
  • [22] ROBUSTNESS OF MAXIMUM-LIKELIHOOD ESTIMATION PROCEDURE IN FACTOR ANALYSIS
    FULLER, EL
    HEMMERLE, WJ
    PSYCHOMETRIKA, 1966, 31 (02) : 255 - 255
  • [23] The multiple roots phenomenon in maximum likelihood estimation for factor analysis
    Gross, Elizabeth
    Petrovic, Sonja
    Richards, Donald
    Stasi, Despina
    50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 : 109 - 119
  • [24] Applications of maximum likelihood principal component analysis: incomplete data sets and calibration transfer
    Andrews, DT
    Wentzell, PD
    ANALYTICA CHIMICA ACTA, 1997, 350 (03) : 341 - 352
  • [25] Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
    Choi, SW
    Martin, EB
    Morris, AJ
    Lee, IB
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (07) : 2316 - 2327
  • [26] Dynamic modeling of hybridoma cell cultures using maximum likelihood principal component analysis
    Dewasme, L.
    Cote, F.
    Filee, P.
    Hantson, A. -L.
    Wouwer, A. Vande
    IFAC PAPERSONLINE, 2017, 50 (01): : 12143 - 12148
  • [27] Maximum likelihood principal component analysis with correlated measurement errors: theoretical and practical considerations
    Wentzell, PD
    Lohnes, MT
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 45 (1-2) : 65 - 85
  • [28] Parameter estimation of linear motion blur based on principal component analysis
    Li, Hai-Sen
    Zhang, Yan-Ning
    Yao, Rui
    Sun, Jin-Qiu
    Li, H.-S. (haisenli.nwpu@gmail.com), 1600, Chinese Academy of Sciences (21): : 2656 - 2663
  • [29] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596
  • [30] Parameter Estimation for α-GMM Based on Maximum Likelihood Criterion
    Wu, Dalei
    NEURAL COMPUTATION, 2009, 21 (06) : 1776 - 1795