Parameter Estimation in Factor Analysis: Maximum Likelihood versus Principal Component

被引:14
|
作者
Kassim, Suraiya [1 ]
Hasan, Husna [1 ]
Ismon, Aisyah Mohd [1 ]
Asri, Fahimah Muhammad [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Minden 11800, Penang, Malaysia
来源
PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B | 2013年 / 1522卷
关键词
factor analysis; principal component estimator; maximum likelihood estimator; COMMON FACTOR-ANALYSIS;
D O I
10.1063/1.4801279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Factor analysis (FA) is a multivariate statistical technique to uncover latent constructs of observed variables while principal component analysis (PCA) is a technique to reduce the number of variables in large data sets. While both are different techniques with different objectives, they often produced the same factor solution. In this paper, the multivariate statistical theory behind PCA and FA is discussed to highlight their differences and similarities. In particular, the factor extraction technique of PCA is compared to the extraction procedures of principal axis factoring (PAF) and maximum likelihood estimation (MLE) in factor analysis. Results from applying the procedures on a published data set will be discussed and the appropriate use of each will be suggested.
引用
收藏
页码:1293 / 1299
页数:7
相关论文
共 50 条
  • [1] On the Consistency of Maximum Likelihood Estimation of Probabilistic Principal Component Analysis
    Datta, Arghya
    Chakrabarty, Sayak
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Maximum likelihood principal component analysis
    Wentzell, PD
    Andrews, DT
    Hamilton, DC
    Faber, K
    Kowalski, BR
    JOURNAL OF CHEMOMETRICS, 1997, 11 (04) : 339 - 366
  • [3] Stoichiometric identification with maximum likelihood principal component analysis
    Mailier, Johan
    Remy, Marcel
    Vande Wouwer, Alain
    JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (04) : 739 - 765
  • [4] Stoichiometric identification with maximum likelihood principal component analysis
    Johan Mailier
    Marcel Remy
    Alain Vande Wouwer
    Journal of Mathematical Biology, 2013, 67 : 739 - 765
  • [5] Sparse online principal component analysis for parameter estimation in factor model
    Guo, Guangbao
    Wei, Chunjie
    Qian, Guoqi
    COMPUTATIONAL STATISTICS, 2023, 38 (02) : 1095 - 1116
  • [6] Sparse online principal component analysis for parameter estimation in factor model
    Guangbao Guo
    Chunjie Wei
    Guoqi Qian
    Computational Statistics, 2023, 38 : 1095 - 1116
  • [7] MAXIMUM LIKELIHOOD ESTIMATION AND FACTOR ANALYSIS
    Young, Gale
    PSYCHOMETRIKA, 1941, 6 (01) : 49 - 53
  • [8] Analysis of the maximum likelihood, total least squares and principal component approaches for frequency response function estimation
    White, PR
    Tan, MH
    Hammond, JK
    JOURNAL OF SOUND AND VIBRATION, 2006, 290 (3-5) : 676 - 689
  • [9] Maximum likelihood estimation in constrained parameter spaces for mixtures of factor analyzers
    Francesca Greselin
    Salvatore Ingrassia
    Statistics and Computing, 2015, 25 : 215 - 226
  • [10] Maximum likelihood estimation in constrained parameter spaces for mixtures of factor analyzers
    Greselin, Francesca
    Ingrassia, Salvatore
    STATISTICS AND COMPUTING, 2015, 25 (02) : 215 - 226