NOETHERIAN HOPF ALGEBRAS

被引:12
作者
Goodearl, K. R. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
DUALIZING COMPLEXES; QUANTUM GROUPS; DIMENSION ONE; PI; FINITE; ANTIPODE;
D O I
10.1017/S0017089513000517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A brief survey of some aspects of noetherian Hopf algebras is given, concentrating on structure, homology, and classification, and accompanied by a panoply of open problems.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 34 条
[1]  
Andruskiewitsch N, 2004, J REINE ANGEW MATH, V577, P81
[2]   Triangular Hopf algebras with the Chevalley property [J].
Andruskiewitsch, N ;
Etingof, P ;
Gelaki, S .
MICHIGAN MATHEMATICAL JOURNAL, 2001, 49 (02) :277-298
[3]   Finite quantum groups and Cartan matrices [J].
Andruskiewitsch, N .
ADVANCES IN MATHEMATICS, 2000, 154 (01) :1-45
[4]   On Nichols algebras with generic braiding [J].
Andruskiewitsch, Nicolas ;
Angiono, Ivan Ezequiel .
MODULES AND COMODULES, 2008, :47-64
[5]   On the structure of (co-Frobenius) Hopf algebras [J].
Andruskiewitsch, Nicolas ;
Cuadra, Juan .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (01) :83-104
[6]  
Angiono I. E., J REINE ANG IN PRESS
[7]  
[Anonymous], 1987, P INT C MATH
[8]   Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras [J].
Brown, K. A. ;
Zhang, J. J. .
JOURNAL OF ALGEBRA, 2008, 320 (05) :1814-1850
[9]   Prime regular Hopf algebras of GK-dimension one [J].
Brown, K. A. ;
Zhang, J. J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 :260-302
[10]  
Brown K. A., 2002, Advanced Courses in Mathematics CRM Barcelona