Special classes of positive and completely positive maps

被引:20
作者
Li, CK
Woerdeman, HJ
机构
[1] Department of Mathematics, College of William and Mary, Williamsburg
基金
美国国家科学基金会;
关键词
MATRIX ALGEBRAS; LINEAR-MAPS; EXTREME;
D O I
10.1016/S0024-3795(96)00776-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Characterizations are given for the positive and completely positive maps on n x n complex matrices that leave invariant the diagonal entries or the kth elementary symmetric function of the diagonal entries, 1 < k less than or equal to n. In addition, it is shown that such a positive map is always decomposable if n less than or equal to 3, and this fails to hold if n > 3. The real case is also considered. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
[21]   Exposedness of elementary positive maps between matrix algebras [J].
Kye, Seung-Hyeok .
LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (18) :3081-3090
[22]   KSGNS TYPE REPRESENTATIONS ON KREIN C*-MODULES ASSOCIATED WITH PROJECTIVE J- COVARIANT (α) - COMPLETELY POSITIVE MAPS [J].
Costache, Tania-Luminita .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (02) :67-78
[23]   MORE INEQUALITIES FOR POSITIVE LINEAR MAPS [J].
Sharma, R. ;
Thakur, A. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (01) :1-9
[24]   A class of optimal positive maps in Mn [J].
Bera, Anindita ;
Sarbicki, Gniewomir ;
Chruscinski, Dariusz .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 668 :131-148
[25]   Entanglement witnesses generated by positive maps [J].
Yang, Wei .
QUANTUM INFORMATION PROCESSING, 2015, 14 (01) :287-301
[26]   ON POSITIVE MAPS; PPT STATES AND ENTANGLEMENT [J].
Majewski, Wiadysiaw A. .
QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 :205-215
[27]   Rank properties of exposed positive maps [J].
Marciniak, Marcin .
LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07) :970-975
[28]   Cones of positive maps and their duality relations [J].
Skowronek, Lukasz ;
Stormer, Erling ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
[29]   k-decomposability of positive maps [J].
Majewski, WA ;
Marciniak, M .
QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2005, 18 :362-374
[30]   ON THE PROJECTIVE COVARIANT REPRESENTATIONS OF C*-DYNAMICAL SYSTEMS ASSOCIATED WITH COMPLETELY MULTI-POSITIVE PROJECTIVE u-COVARIANT MAPS [J].
Costache, Tania-Luminita .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2010, 72 (04) :185-196