Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions

被引:181
作者
Toor, Saqib S. [1 ]
Reddy, Harvind [2 ]
Deng, Shuguang [2 ]
Hoffmann, Jessica [1 ]
Spangsmark, Dorte [3 ]
Madsen, Linda B. [3 ]
Holm-Nielsen, Jens Bo [4 ]
Rosendahl, Lasse A. [1 ]
机构
[1] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
[2] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA
[3] Aalborg Univ, Sect Chem Engn, Dept Biotechnol Chem & Environm Engn, DK-6700 Esbjerg, Denmark
[4] Aalborg Univ, Dept Energy Technol, DK-6700 Esbjerg, Denmark
关键词
Hydrothermal liquefaction; Subcritical water; Algal biofuel; Nannochloropsis salina; Spirulina; ALGAL BIOMASS; BIO-OIL; MICROALGAE CULTIVATION; CHLORELLA-SOROKINIANA; TRANSESTERIFICATION; BIOFUELS; POLYSACCHARIDES;
D O I
10.1016/j.biortech.2012.12.144
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220-375 degrees C, 20-255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC-MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. sauna at 350 degrees C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 degrees C and 115 bar, while the optimal condition for N. sauna is at 350 degrees C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 419
页数:7
相关论文
共 32 条
[21]   Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies [J].
Peterson, Andrew A. ;
Vogel, Frederic ;
Lachance, Russell P. ;
Froeling, Morgan ;
Antal, Michael J., Jr. ;
Tester, Jefferson W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :32-65
[22]   Biomass to biofuels, a chemical perspective [J].
Petrus, Leo ;
Noordermeer, Minke A. .
GREEN CHEMISTRY, 2006, 8 (10) :861-867
[23]   Hydrothermal processing of microalgae using alkali and organic acids [J].
Ross, A. B. ;
Biller, P. ;
Kubacki, M. L. ;
Li, H. ;
Lea-Langton, A. ;
Jones, J. M. .
FUEL, 2010, 89 (09) :2234-2243
[24]   A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel [J].
Sharma, Yogesh C. ;
Singh, Bhaskar ;
Korstad, John .
GREEN CHEMISTRY, 2011, 13 (11) :2993-3006
[25]   Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds [J].
Srokol, Z ;
Bouche, AG ;
van Estrik, A ;
Strik, RCJ ;
Maschmeyer, T ;
Peters, JA .
CARBOHYDRATE RESEARCH, 2004, 339 (10) :1717-1726
[26]   Hydrothermal liquefaction of biomass: A review of subcritical water technologies [J].
Toor, Saqib Sohail ;
Rosendahl, Lasse ;
Rudolf, Andreas .
ENERGY, 2011, 36 (05) :2328-2342
[27]  
U. S. DOE, 2010, NAT ALG BIOF TECHN R
[28]   Beyond Petrochemicals: The Renewable Chemicals Industry [J].
Vennestrom, P. N. R. ;
Osmundsen, C. M. ;
Christensen, C. H. ;
Taarning, Esben .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (45) :10502-10509
[29]   Decomposition of a long chain saturated fatty acid with some additives in hot compressed water [J].
Watanabe, Masaru ;
Iida, Toru ;
Inomata, Hiroshi .
ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (18-19) :3344-3350
[30]   Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics [J].
Williams, Peter J. le B. ;
Laurens, Lieve M. L. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (05) :554-590