Sets Computing the Symmetric Tensor Rank

被引:12
作者
Ballico, Edoardo [1 ]
Chiantini, Luca [2 ]
机构
[1] Univ Trento, Dipartimento Matemat, I-38123 Povo, TN, Italy
[2] Univ Siena, Dipartimento Sci Matemat & Informat R Magari, I-53100 Siena, Italy
关键词
Symmetric tensor rank; Veronese embedding;
D O I
10.1007/s00009-012-0214-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let denote the degree d Veronese embedding of . For any , the symmetric tensor rank sr(P) is the minimal cardinality of a set spanning P. Let be the set of all such that computes sr(P). Here we classify all such that sr(P) < 3d/2 and sr(P) is computed by at least two subsets of . For such tensors , we prove that has no isolated points.
引用
收藏
页码:643 / 654
页数:12
相关论文
共 18 条
  • [11] On the Rank of a Binary Form
    Comas, Gonzalo
    Seiguer, Malena
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (01) : 65 - 78
  • [12] SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK
    Comon, Pierre
    Golub, Gene
    Lim, Lek-Heng
    Mourrain, Bernard
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1254 - 1279
  • [13] The dual minimum distance of arbitrary-dimensional algebraic-geometric codes
    Couvreur, Alain
    [J]. JOURNAL OF ALGEBRA, 2012, 350 (01) : 84 - 107
  • [14] TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM
    de Silva, Vin
    Lim, Lek-Heng
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1084 - 1127
  • [15] Hartshorne R., 1977, Algebraic geometry, Graduate Texts in Mathematics, pxvi
  • [16] Tensor Decompositions and Applications
    Kolda, Tamara G.
    Bader, Brett W.
    [J]. SIAM REVIEW, 2009, 51 (03) : 455 - 500
  • [17] On the Ranks and Border Ranks of Symmetric Tensors
    Landsberg, J. M.
    Teitler, Zach
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (03) : 339 - 366
  • [18] Landsberg J. M., 2012, GRADUATE STUDIES MAT, V118