Sets Computing the Symmetric Tensor Rank

被引:12
作者
Ballico, Edoardo [1 ]
Chiantini, Luca [2 ]
机构
[1] Univ Trento, Dipartimento Matemat, I-38123 Povo, TN, Italy
[2] Univ Siena, Dipartimento Sci Matemat & Informat R Magari, I-53100 Siena, Italy
关键词
Symmetric tensor rank; Veronese embedding;
D O I
10.1007/s00009-012-0214-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let denote the degree d Veronese embedding of . For any , the symmetric tensor rank sr(P) is the minimal cardinality of a set spanning P. Let be the set of all such that computes sr(P). Here we classify all such that sr(P) < 3d/2 and sr(P) is computed by at least two subsets of . For such tensors , we prove that has no isolated points.
引用
收藏
页码:643 / 654
页数:12
相关论文
共 18 条
  • [1] JOINS AND HIGHER SECANT VARIETIES
    ADLANDSVIK, B
    [J]. MATHEMATICA SCANDINAVICA, 1987, 61 (02) : 213 - 222
  • [2] Ballico E., MATH Z IN PRESS
  • [3] Ballico E., ARXIV12021741MATHAG
  • [4] Ballico E., ARXIV10103546V2MATHA
  • [5] Computing symmetric rank for symmetric tensors
    Bernardi, Alessandra
    Gimigliano, Alessandro
    Ida, Monica
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) : 34 - 53
  • [6] Symmetric tensor decomposition
    Brachat, Jerome
    Comon, Pierre
    Mourrain, Bernard
    Tsigaridas, Elias
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 1851 - 1872
  • [7] SECANT VARIETIES TO HIGH DEGREE VERONESE REEMBEDDINGS, CATALECTICANT MATRICES AND SMOOTHABLE GORENSTEIN SCHEMES
    Buczynska, Weronika
    Buczynski, Jaroslaw
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (01) : 63 - 90
  • [8] Buczynski J., ARXIV10070192V3MATHA
  • [9] Buczynski J., ARXIV09094262V4MATHA
  • [10] On the concept of k-secant order of a variety
    Chiantini, Luca
    Ciliberto, Ciro
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 436 - 454