Yoshida lifts and the Bloch-Kato conjecture for the convolution L-function

被引:10
作者
Agarwal, Mahesh [1 ]
Klosin, Krzysztof [2 ]
机构
[1] Univ Michigan, Dept Math & Stat, Dearborn, MI 48128 USA
[2] CUNY Queens Coll, Dept Math, Flushing, NY 11367 USA
关键词
Congruences among automorphic forms; Siegel modular forms; Special L-values; Galois representations; Bloch-Kato conjecture; SIEGEL MODULAR-FORMS; REPRESENTATIONS; CONSTRUCTION;
D O I
10.1016/j.jnt.2013.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(1) (resp. f(2)) denote two (elliptic) newforms of prime level N, trivial character and weight 2 (resp. k + 2, where k is an element of {8,12}). We provide evidence for the Bloch-Kato conjecture for the motive M = rho(f1) circle times rho(f2)(-k/2 - 1) by proving that under some assumptions the l-valuation of the order of the Bloch-Kato Selmer group of M is bounded from below by the l-valuation of the relevant L-value (a special value of the convolution L-function of f(1) and f(2)). We achieve this by constructing congruences between the Yoshida lift Y(f(1) circle times f(2)) of f(1) and f(2) and Siegel modular forms whose l-adic Galois representations are irreducible. Our result is conditional upon a conjectural formula for the Petersson norm of Y(f(1) circle times f(2)). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2496 / 2537
页数:42
相关论文
共 42 条
[1]  
Agarwal M., 2007, THESIS U MICHIGAN AN
[2]  
Andrianov A. N., 1987, GRUNDLEHREN MATH WIS, V286, DOI [10.1007/978-3-642-70341-6, DOI 10.1007/978-3-642-70341-6]
[3]  
ANDRIANOV AN, 1995, TRANSL MATH MONOGR, V145
[4]  
[Anonymous], 1987, SUGAKU, V39, P124
[5]  
[Anonymous], 1997, GRAD STUD MATH
[6]  
[Anonymous], 1999, FUNDAMENTAL PRINCIPL, DOI DOI 10.1007/978-3-662-03983-0
[7]  
[Anonymous], 1993, ELEMENTARY THEORY L
[8]  
Bellaïche J, 2004, ANN SCI ECOLE NORM S, V37, P611, DOI 10.1016/S0012-9593(04)00039-4
[9]   On deformation rings of residually reducible Galois representations and R = T theorems [J].
Berger, Tobias ;
Klosin, Krzysztof .
MATHEMATISCHE ANNALEN, 2013, 355 (02) :481-518
[10]   On the Eisenstein ideal for imaginary quadratic fields [J].
Berger, Tobias .
COMPOSITIO MATHEMATICA, 2009, 145 (03) :603-632