Phylogenetic convolutional neural networks in metagenomics

被引:65
作者
Fioravanti, Diego [1 ,2 ]
Giarratano, Ylenia [3 ]
Maggio, Valerio [1 ]
Agostinelli, Claudio [4 ]
Chierici, Marco [1 ]
Jurman, Giuseppe [1 ]
Furlanello, Cesare [1 ]
机构
[1] FBK, Via Sommarive 18 Povo, I-38123 Trento, Italy
[2] Max Planck Inst Intelligent Syst, Spemannstr 34, D-72076 Tubingen, Germany
[3] Univ Edinburgh, Ctr Med Informat, Usher Inst, 9 Little France Rd, Edinburgh EH16 4UX, Midlothian, Scotland
[4] Univ Trento, Dept Math, Via Sommarive 14 Povo, I-38123 Trento, Italy
关键词
Metagenomics; Deep learning; Convolutional neural networks; Phylogenetic trees; SELECTION; TOOL;
D O I
10.1186/s12859-018-2033-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Results: Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Conclusion: Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.
引用
收藏
页数:13
相关论文
共 61 条
[41]  
Min S, 2016, BRIEF BIOINFORM, V18, P542
[42]   Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment [J].
Morgan, Xochitl C. ;
Tickle, Timothy L. ;
Sokol, Harry ;
Gevers, Dirk ;
Devaney, Kathryn L. ;
Ward, Doyle V. ;
Reyes, Joshua A. ;
Shah, Samir A. ;
LeLeiko, Neal ;
Snapper, Scott B. ;
Bousvaros, Athos ;
Korzenik, Joshua ;
Sands, Bruce E. ;
Xavier, Ramnik J. ;
Huttenhower, Curtis .
GENOME BIOLOGY, 2012, 13 (09) :R79
[43]  
Nezhada MZ, 2017, ARXIV170405960
[44]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[45]   FastTree 2-Approximately Maximum-Likelihood Trees for Large Alignments [J].
Price, Morgan N. ;
Dehal, Paramvir S. ;
Arkin, Adam P. .
PLOS ONE, 2010, 5 (03)
[46]   SILVA:: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB [J].
Pruesse, Elmar ;
Quast, Christian ;
Knittel, Katrin ;
Fuchs, Bernhard M. ;
Ludwig, Wolfgang ;
Peplies, Joerg ;
Gloeckner, Frank Oliver .
NUCLEIC ACIDS RESEARCH, 2007, 35 (21) :7188-7196
[47]   A human gut microbial gene catalogue established by metagenomic sequencing [J].
Qin, Junjie ;
Li, Ruiqiang ;
Raes, Jeroen ;
Arumugam, Manimozhiyan ;
Burgdorf, Kristoffer Solvsten ;
Manichanh, Chaysavanh ;
Nielsen, Trine ;
Pons, Nicolas ;
Levenez, Florence ;
Yamada, Takuji ;
Mende, Daniel R. ;
Li, Junhua ;
Xu, Junming ;
Li, Shaochuan ;
Li, Dongfang ;
Cao, Jianjun ;
Wang, Bo ;
Liang, Huiqing ;
Zheng, Huisong ;
Xie, Yinlong ;
Tap, Julien ;
Lepage, Patricia ;
Bertalan, Marcelo ;
Batto, Jean-Michel ;
Hansen, Torben ;
Le Paslier, Denis ;
Linneberg, Allan ;
Nielsen, H. Bjorn ;
Pelletier, Eric ;
Renault, Pierre ;
Sicheritz-Ponten, Thomas ;
Turner, Keith ;
Zhu, Hongmei ;
Yu, Chang ;
Li, Shengting ;
Jian, Min ;
Zhou, Yan ;
Li, Yingrui ;
Zhang, Xiuqing ;
Li, Songgang ;
Qin, Nan ;
Yang, Huanming ;
Wang, Jian ;
Brunak, Soren ;
Dore, Joel ;
Guarner, Francisco ;
Kristiansen, Karsten ;
Pedersen, Oluf ;
Parkhill, Julian ;
Weissenbach, Jean .
NATURE, 2010, 464 (7285) :59-U70
[48]  
Roy D, 2015, IEEE IJCNN
[49]  
Saari D.G., 2001, Chaotic Elections! A Mathematician Looks at Voting
[50]  
Sczyrba A, 2017, NAT METHODS, V14, P1063, DOI [10.1038/NMETH.4458, 10.1038/nmeth.4458]