Cooperative reinforcement learning in topology-based multi-agent systems

被引:8
作者
Xiao, Dan [1 ]
Tan, Ah-Hwee [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
关键词
Topology-based multi-agent systems; Cooperative learning; Reinforcement learning; Binary tree formation; Policy sharing; SUPPLY CHAIN; ALGORITHM; ARCHITECTURE;
D O I
10.1007/s10458-011-9183-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Topology-based multi-agent systems (TMAS), wherein agents interact with one another according to their spatial relationship in a network, are well suited for problems with topological constraints. In a TMAS system, however, each agent may have a different state space, which can be rather large. Consequently, traditional approaches to multi-agent cooperative learning may not be able to scale up with the complexity of the network topology. In this paper, we propose a cooperative learning strategy, under which autonomous agents are assembled in a binary tree formation (BTF). By constraining the interaction between agents, we effectively unify the state space of individual agents and enable policy sharing across agents. Our complexity analysis indicates that multi-agent systems with the BTF have a much smaller state space and a higher level of flexibility, compared with the general form of n-ary (n > 2) tree formation. We have applied the proposed cooperative learning strategy to a class of reinforcement learning agents known as temporal difference-fusion architecture for learning and cognition (TD-FALCON). Comparative experiments based on a generic network routing problem, which is a typical TMAS domain, show that the TD-FALCON BTF teams outperform alternative methods, including TD-FALCON teams in single agent and n-ary tree formation, a Q-learning method based on the table lookup mechanism, as well as a classical linear programming algorithm. Our study further shows that TD-FALCON BTF can adapt and function well under various scales of network complexity and traffic volume in TMAS domains.
引用
收藏
页码:86 / 119
页数:34
相关论文
共 50 条
  • [21] Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems
    Zhang, Yi
    Zhu, Haihua
    Tang, Dunbing
    Zhou, Tong
    Gui, Yong
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2022, 78
  • [22] Cooperative Reinforcement Learning Algorithm to Distributed Power System Based on Multi-Agent
    Gao, La-mei
    Zeng, Jun
    Wu, Jie
    Li, Min
    2009 3RD INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS: ELECTRIC VEHICLE AND GREEN ENERGY, 2009, : 53 - 53
  • [23] A Deep Reinforcement Learning Method based on Deterministic Policy Gradient for Multi-Agent Cooperative Competition
    Zuo, Xuan
    Xue, Hui-Feng
    Wang, Xiao-Yin
    Du, Wan-Ru
    Tian, Tao
    Gao, Shan
    Zhang, Pu
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2021, 23 (03): : 88 - 98
  • [24] Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control
    Peake, Ashley
    McCalmon, Joe
    Raiford, Benjamin
    Liu, Tongtong
    Alqahtani, Sarra
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 15 - 22
  • [25] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [26] Cooperative Behavior by Multi-agent Reinforcement Learning with Abstractive Communication
    Tanda, Jin
    Moustafa, Ahmed
    Ito, Takayuki
    2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 8 - 13
  • [27] Mention Recommendation in Twitter with Cooperative Multi-Agent Reinforcement Learning
    Gui, Tao
    Liu, Peng
    Zhang, Qi
    Zhu, Liang
    Peng, Minlong
    Zhou, Yunhua
    Huang, Xuanjing
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 535 - 544
  • [28] Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward
    Shao, Kun
    Zhu, Yuanheng
    Tang, Zhentao
    Zhao, Dongbin
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [29] Building Collaboration in Multi-agent Systems Using Reinforcement Learning
    Aydin, Mehmet Emin
    Fellows, Ryan
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2018, PT II, 2018, 11056 : 201 - 212
  • [30] Action Prediction for Cooperative Exploration in Multi-agent Reinforcement Learning
    Zhang, Yanqiang
    Feng, Dawei
    Ding, Bo
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II, 2024, 14448 : 358 - 372