Asymptotically Mean Value Harmonic Functions in Doubling Metric Measure Spaces

被引:3
作者
Adamowicz, Tomasz [1 ]
Kijowski, Antoni [2 ]
Soultanis, Elefterios [3 ]
机构
[1] Polish Acad Sci, Inst Math, Warsaw, Poland
[2] GIST, Anal Metr Spaces Unit, Nago, Okinawa, Japan
[3] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands
来源
ANALYSIS AND GEOMETRY IN METRIC SPACES | 2022年 / 10卷 / 01期
关键词
Asymptotic mean value property; elliptic PDEs; harmonic functions; Gromov-Hausdorff convergence; Holder continuity; mean value property; Sobolev spaces; weighted Euclidean spaces;
D O I
10.1515/agms-2022-0143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Holder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajlasz-Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.
引用
收藏
页码:344 / 372
页数:29
相关论文
共 39 条
  • [1] Adamowicz T., ASYMPTOTICALLY MEAN
  • [2] Mean Value Property and Harmonicity on Carnot-Caratheodory Groups
    Adamowicz, Tomasz
    Warhurst, Ben
    [J]. POTENTIAL ANALYSIS, 2020, 52 (03) : 497 - 525
  • [3] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [4] BOUNDEDNESS OF AVERAGING OPERATORS ON GEOMETRICALLY DOUBLING METRIC SPACES
    Aldaz, Jesus M.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 497 - 503
  • [5] ON THE ASYMPTOTIC MEAN VALUE PROPERTY FOR PLANAR p-HARMONIC FUNCTIONS
    Arroyo, Angel
    Llorente, Jose G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3859 - 3868
  • [6] Bojarski B, 2002, INDIANA U MATH J, V51, P507
  • [7] Bojarski B, 2013, MATH SCAND, V112, P161
  • [8] BOSE AK, 1965, T AM MATH SOC, V118, P472
  • [9] Buckley SM, 1999, ANN ACAD SCI FENN-M, V24, P519
  • [10] Spectral stability of metric-measure Laplacians
    Burago, Dmitri
    Ivanov, Sergei
    Kurylev, Yaroslav
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2019, 232 (01) : 125 - 158