Invariant manifolds and separation of the variables for integrable chains

被引:3
|
作者
Habibullin, I. T. [1 ,2 ]
Khakimova, A. R. [1 ]
机构
[1] Russian Acad Sci, Ufa Fed Res Ctr, Inst Math, 112 Chernyshevsky St, Ufa 450008, Russia
[2] Bashkir State Univ, 32 Validy St, Ufa 450076, Russia
关键词
Volterra chain; explicit solutions; soliton; invariant manifold; LAX PAIRS; EQUATIONS;
D O I
10.1088/1751-8121/aba399
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A notion of the generalized invariant manifold for a nonlinear integrable lattice is considered. Earlier, it has been observed that this kind of objects provide an effective tool for evaluating the recursion operators and Lax pairs. In this article we show with an example of the Volterra chain that the generalized invariant manifold can be used for constructing exact particular solutions as well. To this end we first find an invariant manifold depending on two constant parameters. Then we assume that an ordinary difference equation (ODE) defining the generalized invariant manifold has a solution polynomially depending on one of the spectral parameters and derive an ODE, for the roots of the polynomials. The efficiency of the method is approved by some illustrative examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Invariant manifolds and Lax pairs for integrable nonlinear chains
    I. T. Habibullin
    A. R. Khakimova
    Theoretical and Mathematical Physics, 2017, 191 : 793 - 810
  • [2] INVARIANT MANIFOLDS AND LAX PAIRS FOR INTEGRABLE NONLINEAR CHAINS
    Habibullin, I. T.
    Khakimova, A. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 191 (03) : 793 - 810
  • [3] Separation of variables for integrable systems on Poisson manifolds
    Tsiganov, AV
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1128 - 1134
  • [4] Separation of variables for integrable systems on Poisson manifolds
    A. V. Tsiganov
    Physics of Atomic Nuclei, 2002, 65 : 1128 - 1134
  • [5] Invariant Manifolds of Hyperbolic Integrable Equations and their Applications
    Habibullin I.T.
    Khakimova A.R.
    Journal of Mathematical Sciences, 2021, 257 (3) : 410 - 423
  • [6] GENERALIZED INVARIANT MANIFOLDS FOR INTEGRABLE EQUATIONS AND THEIR APPLICATIONS
    Habibullin, I. T.
    Khakimova, A. R.
    Smirnov, A. O.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 135 - 151
  • [7] Determinant form of correlators in high rank integrable spin chains via separation of variables
    Nikolay Gromov
    Fedor Levkovich-Maslyuk
    Paul Ryan
    Journal of High Energy Physics, 2021
  • [8] Determinant form of correlators in high rank integrable spin chains via separation of variables
    Gromov, Nikolay
    Levkovich-Maslyuk, Fedor
    Ryan, Paul
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [9] Degenerate invariant manifolds of some completely integrable systems
    Médan, C
    MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (04) : 665 - 689
  • [10] Degenerate invariant manifolds of some completely integrable systems
    Christine Médan
    Mathematische Zeitschrift, 1999, 232 : 665 - 689