The combination of molecular docking and network pharmacology reveals the molecular mechanism of Danggui Niantong decoction in treating gout

被引:9
|
作者
Liu, Yuan [1 ]
Luo, Di [2 ]
Xu, Bo [1 ,3 ]
机构
[1] Shandong Univ Chinese Tradit Med, Clin Med Coll 1, Jinan, Peoples R China
[2] Shandong Univ Chinese Tradit Med, Microscop Orthopaed, Jinan, Peoples R China
[3] Shandong Univ Tradit Chinese Med, Clin Med Coll 1, 16369 Jingshi Rd, Jinan 250000, Shandong, Peoples R China
关键词
Danggui Niantong decoction; gout; molecular docking; network pharmacology; traditional Chinese medicine; URIC-ACID; GENE; POLYMORPHISMS; EXPRESSION; FLAVONOIDS; ARTHRITIS; DISEASE; CELLS; IL-17; CXCL8;
D O I
10.1097/MD.0000000000031535
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background:Due to unhealthy diet and living habits, the incidence of gout is on the rise and has become a common disease with a high incidence. Danggui Niantong decoction (DGNTD), as a classic formula composed of 15 common herbs, has been widely used in clinical practice since ancient times to prevent and treat gout. However, the pharmacological mechanism and target of DGNTD are not clear. Methods:The potential active compounds and targets of DGNTD were obtained by traditional Chinese medicine systems pharmacology (TCMSP) database, and the differential genes of gout patients and controls were analyzed in gene expression omnibus (GEO) database. GSEA analysis of differential genes with GSEA 4.1.0 software and then the differential genes were intersected with the gout-related disease targets searched by GeneCard, CTD and OMIM disease database to obtain the final disease target. The "Traditional Chinese medicine-Active compounds-Targets" network was constructed by Cytoscape3.7.2 software. The R packet is used for enrichment analysis. The molecular docking between the active compound of DGNTD and the core target was verified by AutoDockTools software. Results:Two hundred eighty six and 244 targets of DGNTD-related active components and 652 targets of gout were obtained, of which 13 targets were potential targets of DGNTD in the treatment of gout. GSEA analysis showed that the differential genes were mainly involved in apoptosis, inflammatory reaction, and receptor metabolism and so on. Gene ontology (GO) functional enrichment analysis shows that DGNTD regulates many biological processes, such as the response to purine-containing compound and response to lipopolysaccharide, positive regulation of acute inflammatory response and other cellular components. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis shows that DGNTD treatment of gout is mainly related to interleukin-17 (IL-17), Toll-like receptor, rheumatoid arthritis, tumor necrosis factor (TNF) and so on. The results of molecular docking showed that the five active compounds in DGNTD had strong binding activity to core protein receptors. Conclusions:The active compounds of DGNTD may achieve the purpose of treating gout by acting on the core target (CASP8, CXCL8, FOS, IL1B, IL6, JUN, PTGS2, STAT1, MMP1, TNF) to regulate cell metabolism, proliferation and apoptosis, and improve inflammatory response, which is the result of multi-component, multi-target and multi-pathway interaction. It provides an idea for the development of new combined drugs for gout.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Network pharmacology and molecular docking-based analyses to predict the potential mechanism of Huangqin decoction in treating colorectal cancer
    Li, Ying-Jie
    Tang, Dong-Xin
    Yan, Hong-Ting
    Yang, Bing
    Yang, Zhu
    Long, Feng-Xi
    WORLD JOURNAL OF CLINICAL CASES, 2023, 11 (19) : 4553 - 4566
  • [32] Identification of Taohong Siwu Decoction in Treating Chronic Glomerulonephritis Using Network Pharmacology and Molecular Docking
    Du, Guoxia
    Qu, Xiaohan
    Hu, Jing
    Zhang, Yuzhen
    Cai, Yongming
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (11)
  • [33] Predicting the Molecular Mechanism of Sini Jia Renshen Decoction in Treating Severe COVID-19 Patients Based on Network Pharmacology and Molecular Docking
    Liu, Yi Wen
    Yang, Ai Xia
    Lu, Li
    Huang, Tie Hua
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (12)
  • [34] Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking
    Li, Qian
    Chai, Yihui
    Li, Wen
    Guan, Liancheng
    Fan, Yizi
    Chen, Yunzhi
    MEDICINE, 2023, 102 (36) : E35109
  • [35] Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking
    Wang, Shuxiao
    Zhao, Yan
    Hu, Xingang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [36] Exploring the mechanism of Erchen decoction in the treatment of atherosclerosis based on network pharmacology and molecular docking
    Li, Wenwen
    Zhang, Guowei
    Zhao, Zhenfeng
    Zuo, Yaoyao
    Sun, Zhenhai
    Chen, Shouqiang
    MEDICINE, 2023, 102 (46) : E35248
  • [37] Network pharmacology and molecular docking to elucidate the mechanism of pulsatilla decoction in the treatment of colon cancer
    Liu, Huan
    Hu, Yuting
    Qi, Baoyu
    Yan, Chengqiu
    Wang, Lin
    Zhang, Yiwen
    Chen, Liang
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [38] Exploring the Therapeutic Mechanism of Pingxin Dingzhi Decoction Through Network Pharmacology and Molecular Docking
    Ju, Xiaojie
    Qi, Chunhua
    Bai, Yulong
    Li, Pengfei
    He, Kuanjun
    ALPHA PSYCHIATRY, 2024, 25 (05):
  • [39] Network pharmacology-and molecular docking-based investigation of Danggui blood-supplementing decoction in ischaemic stroke
    Zhang, Jinling
    Li, Ruiqing
    Yu, Yang
    Sun, Weijia
    Zhang, Chengshi
    Wang, Haijun
    GROWTH FACTORS, 2024, 42 (01) : 13 - 23
  • [40] Integration of Network Pharmacology and Molecular Docking Technology Reveals the Mechanism of the Therapeutic Effect of Xixin Decoction on Alzheimer's Disease
    Zhang, Zhuo
    Xu, Jianglin
    Ma, Suya
    Lin, Nan
    Hou, Minzhe
    Wei, Mingqing
    Li, Ting
    Shi, Jing
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (10) : 1785 - 1804