Entropic forces in binary hard sphere mixtures: Theory and simulation

被引:188
作者
Dickman, R
Attard, P
Simonian, V
机构
[1] UNIV SYDNEY,SCH CHEM,SYDNEY,NSW 2006,AUSTRALIA
[2] CUNY HERBERT H LEHMAN COLL,DEPT PHYS & ASTRON,BRONX,NY 10468
关键词
D O I
10.1063/1.474367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We perform extensive Monte Carlo simulations of binary hard-sphere mixtures (with diameter ratios of 5 and 10), to determine the entropic force between (1) a macrosphere and a hard wall, and (2) a pair of macrospheres. The microsphere background fluid (at volume fractions ranging from 0.1 to 0.34) induces an entropic force on the macrosphere(s); the latter component is at infinite dilution. We find good overall agreement, in both cases, with the predictions of a hypernetted chain-based theory for the entropic force. Our results also argue for the validity of the Derjaguin approximation relating the force between convex bodies to that between planar surfaces. The earlier Asakura-Oosawa theory, based on a simple geometric argument, is only accurate in the low-density limit. (C) 1997 American Institute of Physics.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 22 条
[1]   ON INTERACTION BETWEEN 2 BODIES IMMERSED IN A SOLUTION OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (07) :1255-1256
[2]   INTERACTION BETWEEN PARTICLES SUSPENDED IN SOLUTIONS OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF POLYMER SCIENCE, 1958, 33 (126) :183-192
[3]   HYPERNETTED-CHAIN CLOSURE WITH BRIDGE DIAGRAMS - ASYMMETRIC HARD-SPHERE MIXTURES [J].
ATTARD, P ;
PATEY, GN .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (08) :4970-4982
[4]   SPHERICALLY INHOMOGENEOUS FLUIDS .2. HARD-SPHERE SOLUTE IN A HARD-SPHERE SOLVENT [J].
ATTARD, P .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (05) :3083-3089
[5]   OSCILLATORY SOLVATION FORCES - A COMPARISON OF THEORY AND EXPERIMENT [J].
ATTARD, P ;
PARKER, JL .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (12) :5086-5093
[6]   INTERACTION FREE-ENERGY BETWEEN PLANAR WALLS IN DENSE FLUIDS - AN ORNSTEIN-ZERNIKE APPROACH WITH RESULTS FOR HARD-SPHERE, LENNARD-JONES, AND DIPOLAR SYSTEMS [J].
ATTARD, P ;
BERARD, DR ;
URSENBACH, CP ;
PATEY, GN .
PHYSICAL REVIEW A, 1991, 44 (12) :8224-8234
[7]   Depletion effects in binary hard-sphere fluids [J].
Biben, T ;
Bladon, P ;
Frenkel, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (50) :10799-10821
[8]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[9]   Analysis of friction and adhesion IV The theory of the adhesion of small particles [J].
Derjaguin, B .
KOLLOID-ZEITSCHRIFT, 1934, 69 (02) :155-164
[10]   POLYMER-INDUCED FORCES BETWEEN COLLOIDAL PARTICLES - A MONTE-CARLO SIMULATION [J].
DICKMAN, R ;
YETHIRAJ, A .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (06) :4683-4690