GeneExpressionSignature: an R package for discovering functional connections using gene expression signatures

被引:16
|
作者
Li, Fei [1 ]
Cao, Yang [1 ]
Han, Lu [1 ]
Cui, Xiuliang [1 ]
Xie, Dafei [1 ]
Wang, Shengqi [1 ]
Bo, Xiaochen [1 ]
机构
[1] Beijing Inst Radiat Med, Beijing 100850, Peoples R China
关键词
SET ENRICHMENT; PROFILES; DISEASE;
D O I
10.1089/omi.2012.0087
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Comparisons of gene expression signatures provide a way to explore functional connections among biological events in global aspects of cell response. GeneExpressionSignature is an R package developed for the large-scale analysis of gene expression signatures. The package implements two rank-merging algorithms and two similarity-scoring algorithms. The functions of GeneExpressionSignature provide a flexible solution for gene expression signature-based studies and hold great potential in biomedical research applications, such as drug repurposing. GeneExpressionSignature is released under GPL v2 within the Bioconductor project and is freely available at http://www.bioconductor.org/packages/release/bioc/html/GeneExpressionSignature.html.
引用
收藏
页码:116 / 118
页数:3
相关论文
共 50 条
  • [1] Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer
    Gendoo, Deena M. A.
    Ratanasirigulchai, Natchar
    Schroeder, Markus S.
    Pare, Laia
    Parker, Joel S.
    Prat, Aleix
    Haibe-Kains, Benjamin
    BIOINFORMATICS, 2016, 32 (07) : 1097 - 1099
  • [2] Evaluating the Prognostic Gene Signatures in Bladder Cancer Using 'Curated Bladder Data' R Package
    Al-Dulaimi, Ragheed
    Muhammadi, Shakiba
    HUMAN HEREDITY, 2016, 81 (02) : 51 - 51
  • [3] GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data
    Kévin Rue-Albrecht
    Paul A. McGettigan
    Belinda Hernández
    Nicolas C. Nalpas
    David A. Magee
    Andrew C. Parnell
    Stephen V. Gordon
    David E. MacHugh
    BMC Bioinformatics, 17
  • [4] NormExpression: An R Package to Normalize Gene Expression Data Using Evaluated Methods
    Wu, Zhenfeng
    Liu, Weixiang
    Jin, Xiufeng
    Ji, Haishuo
    Wang, Hua
    Glusman, Gustavo
    Robinson, Max
    Liu, Lin
    Ruan, Jishou
    Gao, Shan
    FRONTIERS IN GENETICS, 2019, 10
  • [5] GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data
    Rue-Albrecht, Kevin
    McGettigan, Paul A.
    Hernandez, Belinda
    Nalpas, Nicolas C.
    Magee, David A.
    Parnell, Andrew C.
    Gordon, Stephen V.
    MacHugh, David E.
    BMC BIOINFORMATICS, 2016, 17
  • [6] xcore: an R package for inference of gene expression regulators
    Migdal, Maciej
    Arakawa, Takahiro
    Takizawa, Satoshi
    Furuno, Masaaki
    Suzuki, Harukazu
    Arner, Erik
    Winata, Cecilia Lanny
    Kaczkowski, Bogumil
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [7] xcore: an R package for inference of gene expression regulators
    Maciej Migdał
    Takahiro Arakawa
    Satoshi Takizawa
    Masaaki Furuno
    Harukazu Suzuki
    Erik Arner
    Cecilia Lanny Winata
    Bogumił Kaczkowski
    BMC Bioinformatics, 24
  • [8] DysRegSig: an R package for identifying gene dysregulations and building mechanistic signatures in cancer
    Li, Quanxue
    Dai, Wentao
    Liu, Jixiang
    Sang, Qingqing
    Li, Yi-Xue
    Li, Yuan-Yuan
    BIOINFORMATICS, 2021, 37 (03) : 429 - 430
  • [9] SScore:: an R package for detecting differential gene expression without gene expression summaries
    Kennedy, RE
    Kerns, RT
    Kong, XR
    Archer, KJ
    Miles, MF
    BIOINFORMATICS, 2006, 22 (10) : 1272 - 1274
  • [10] Penalized functional regression using R package PFLR
    Cameron, Rob
    Guan, Tianyu
    Shi, Haolun
    Lin, Zhenhua
    JOURNAL OF APPLIED STATISTICS, 2025,