Airy process with wanderers, KPZ fluctuations, and a deformation of the GOE distribution

被引:3
作者
Liechty, Karl [1 ]
Nguyen, Gia Bao [2 ]
Remenik, Daniel [3 ,4 ]
机构
[1] DePaul Univ, Dept Math Sci, Chicago, IL 60614 USA
[2] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[4] Univ Chile, Ctr Modelamiento Matemat, IRL CNRS 2807, Santiago, Chile
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2022年 / 58卷 / 04期
基金
瑞典研究理事会;
关键词
Non-intersecting Brownian motions; Airy processes; KPZ fixed point; Random matrices; Painlev? II; NONINTERSECTING BROWNIAN MOTIONS; POLYNUCLEAR GROWTH-MODEL; RANDOM-MATRIX ENSEMBLES; CHARACTERISTIC-POLYNOMIALS; LIMITING DISTRIBUTIONS; LARGEST EIGENVALUE; TIME ASYMPTOTICS; TASEP; TRANSITION; EQUATION;
D O I
10.1214/21-AIHP1229
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the distribution of the supremum of the Airy process with m wanderers minus a parabola, or equivalently the limit of the rescaled maximal height of a system of N non-intersecting Brownian bridges as N -> oo, where the first N - m paths start and end at the origin and the remaining m go between arbitrary positions. The distribution provides a 2m-parameter deformation of the Tracy-Widom GOE distribution, which is recovered in the limit corresponding to all Brownian paths starting and ending at the origin.We provide several descriptions of this distribution function: (i) A Fredholm determinant formula; (ii) A formula in terms of Painleve II functions; (iii) A representation as a marginal of the KPZ fixed point with initial data given as the top path in a stationary system of reflected Brownian motions with drift; (iv) A characterization as the solution of a version of the Bloemendal-Virag PDE (Probab. Theory Related Fields 156 (2013) 795-825; Ann. Probab. 44 (2016) 2726-2769) for spiked Tracy-Widom distributions; (v) A representation as a solution of the KdV equation. We also discuss connections with a model of last passage percolation with boundary sources.
引用
收藏
页码:2250 / 2283
页数:34
相关论文
共 84 条
[21]   Airy kernel with two sets of parameters in directed percolation and Random Matrix Theory [J].
Borodin, Alexei ;
Peche, Sandrine .
JOURNAL OF STATISTICAL PHYSICS, 2008, 132 (02) :275-290
[22]   Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process [J].
Borodin, Alexei ;
Ferrari, Patrik L. ;
Praehofer, Michael .
INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2007,
[23]   Fluctuation properties of the TASEP with periodic initial configuration [J].
Borodin, Alexei ;
Ferrari, Patrik L. ;
Praehofer, Michael ;
Sasamoto, Tomohiro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (5-6) :1055-1080
[24]   Multiplicative functionals on ensembles of non-intersecting paths [J].
Borodin, Alexei ;
Corwin, Ivan ;
Remenik, Daniel .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01) :28-58
[25]   Two Speed TASEP [J].
Borodin, Alexei ;
Ferrari, Patrik L. ;
Sasamoto, Tomohiro .
JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (5-6) :936-977
[26]   Characteristic polynomials of random matrices [J].
Brézin, E ;
Hikami, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :111-135
[27]   The k-tacnode process [J].
Buckingham, Robert ;
Liechty, Karl .
PROBABILITY THEORY AND RELATED FIELDS, 2019, 175 (1-2) :341-395
[28]   Long time asymptotics for constrained diffusions in polyhedral domains [J].
Budhiraja, Amarjit ;
Lee, Chihoon .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (08) :1014-1036
[29]   Multi-critical unitary random matrix ensembles and the general Painleve II equation [J].
Claeys, T. ;
Kuijlaars, A. B. J. ;
Vanlessen, M. .
ANNALS OF MATHEMATICS, 2008, 168 (02) :601-641
[30]   FLUCTUATIONS OF TASEP AND LPP WITH GENERAL INITIAL DATA [J].
Corwin, Ivan ;
Liu, Zhipeng ;
Wang, Dong .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (04) :2030-2082