Combining directed acyclic graphs and the change-in-estimate procedure as a novel approach to adjustment-variable selection in epidemiology
被引:68
作者:
Evans, David
论文数: 0引用数: 0
h-index: 0
机构:
INSERM, UMR S 707, Paris, France
EHESP Sch Publ Hlth, Paris, France
UPMC Sorbonne Univ, Paris, France
Registre Dialyse Peritoneale Langue Francaise, Pontoise, FranceINSERM, UMR S 707, Paris, France
Evans, David
[1
,2
,3
,4
]
Chaix, Basile
论文数: 0引用数: 0
h-index: 0
机构:
INSERM, UMR S 707, Paris, France
UPMC Sorbonne Univ, Paris, FranceINSERM, UMR S 707, Paris, France
Chaix, Basile
[1
,3
]
Lobbedez, Thierry
论文数: 0引用数: 0
h-index: 0
机构:
Registre Dialyse Peritoneale Langue Francaise, Pontoise, France
CHU Clemenceau, Dept Nephrol, Caen, FranceINSERM, UMR S 707, Paris, France
Lobbedez, Thierry
[4
,5
]
Verger, Christian
论文数: 0引用数: 0
h-index: 0
机构:
Registre Dialyse Peritoneale Langue Francaise, Pontoise, FranceINSERM, UMR S 707, Paris, France
Verger, Christian
[4
]
Flahault, Antoine
论文数: 0引用数: 0
h-index: 0
机构:
INSERM, UMR S 707, Paris, France
EHESP Sch Publ Hlth, Paris, FranceINSERM, UMR S 707, Paris, France
Flahault, Antoine
[1
,2
]
机构:
[1] INSERM, UMR S 707, Paris, France
[2] EHESP Sch Publ Hlth, Paris, France
[3] UPMC Sorbonne Univ, Paris, France
[4] Registre Dialyse Peritoneale Langue Francaise, Pontoise, France
Background: Directed acyclic graphs (DAGs) are an effective means of presenting expert-knowledge assumptions when selecting adjustment variables in epidemiology, whereas the change-in-estimate procedure is a common statistics-based approach. As DAGs imply specific empirical relationships which can be explored by the change-in-estimate procedure, it should be possible to combine the two approaches. This paper proposes such an approach which aims to produce well-adjusted estimates for a given research question, based on plausible DAGs consistent with the data at hand, combining prior knowledge and standard regression methods. Methods: Based on the relationships laid out in a DAG, researchers can predict how a collapsible estimator (e. g. risk ratio or risk difference) for an effect of interest should change when adjusted on different variable sets. Implied and observed patterns can then be compared to detect inconsistencies and so guide adjustment-variable selection. Results: The proposed approach involves i. drawing up a set of plausible background-knowledge DAGs; ii. starting with one of these DAGs as a working DAG, identifying a minimal variable set, S, sufficient to control for bias on the effect of interest; iii. estimating a collapsible estimator adjusted on S, then adjusted on S plus each variable not in S in turn ("add-one pattern") and then adjusted on the variables in S minus each of these variables in turn ("minus-one pattern"); iv. checking the observed add-one and minus-one patterns against the pattern implied by the working DAG and the other prior DAGs; v. reviewing the DAGs, if needed; and vi. presenting the initial and all final DAGs with estimates. Conclusion: This approach to adjustment-variable selection combines background-knowledge and statistics-based approaches using methods already common in epidemiology and communicates assumptions and uncertainties in a standardized graphical format. It is probably best suited to areas where there is considerable background knowledge about plausible variable relationships. Researchers may use this approach as an additional tool for selecting adjustment variables when analyzing epidemiological data.
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Edmonds, Andrew
Yotebieng, Marcel
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Yotebieng, Marcel
Lusiama, Jean
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kinshasa, Sch Publ Hlth, Kinshasa, DEM REP CONGOUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Lusiama, Jean
Matumona, Yori
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kinshasa, Sch Publ Hlth, Kinshasa, DEM REP CONGOUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Matumona, Yori
Kitetele, Faustin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kinshasa, Sch Publ Hlth, Kinshasa, DEM REP CONGOUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Kitetele, Faustin
Napravnik, Sonia
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Univ N Carolina, Sch Med, Chapel Hill, NC USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Napravnik, Sonia
Cole, Stephen R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Cole, Stephen R.
Van Rie, Annelies
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Van Rie, Annelies
Behets, Frieda
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Univ N Carolina, Sch Med, Chapel Hill, NC USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Edmonds, Andrew
Yotebieng, Marcel
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Yotebieng, Marcel
Lusiama, Jean
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kinshasa, Sch Publ Hlth, Kinshasa, DEM REP CONGOUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Lusiama, Jean
Matumona, Yori
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kinshasa, Sch Publ Hlth, Kinshasa, DEM REP CONGOUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Matumona, Yori
Kitetele, Faustin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kinshasa, Sch Publ Hlth, Kinshasa, DEM REP CONGOUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Kitetele, Faustin
Napravnik, Sonia
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Univ N Carolina, Sch Med, Chapel Hill, NC USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Napravnik, Sonia
Cole, Stephen R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Cole, Stephen R.
Van Rie, Annelies
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Van Rie, Annelies
Behets, Frieda
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA
Univ N Carolina, Sch Med, Chapel Hill, NC USAUniv N Carolina, Dept Epidemiol, Chapel Hill, NC 27515 USA