3D CROSS-SCALE FEATURE TRANSFORMER NETWORK FOR BRAIN MR IMAGE SUPER-RESOLUTION

被引:4
作者
Zhang, Wanqi [1 ]
Wang, Lulu [1 ]
Chen, Wei [1 ]
Jia, Yuanyuan [2 ]
He, Zhongshi [1 ]
Du, Jinglong [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing, Peoples R China
[2] Chongqing Med Univ, Coll Med Informat, Chongqing, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2022年
关键词
Magnetic resonance image; Cross-scale self-similarity; Super-resolution; Attention mechanism;
D O I
10.1109/ICASSP43922.2022.9746092
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
High-resolution (HR) magnetic resonance (MR) images could provide reliable visual information for clinical diagnosis. Recently, super-resolution (SR) methods based on convolutional neural networks (CNNs) have shown great potential in obtaining HR MR images. However, most existing CNN-based SR methods neglect the internal priors of the MR image, which hides the performance of SR. In this work, we propose a 3D cross-scale feature transformer network (CFTN) to utilize the cross-scale priors within MR features. Specifically, we stack multiple 3D residual channel attention blocks (RCABs) as the backbone. Meanwhile, we design a plug-in mutual-projection feature enhancement module (MFEM) to extract the target-scale features with HR cues, which is able to capture the global cross-scale self-similarity within features and can be flexibly inserted into any position of the backbone. Furthermore, we propose a spatial attention fusion module (SAFM) to adaptively adjust and fuse the target-scale features and upsampled features that are respectively extracted by the MFEM and the backbone. Experimental results show that our CFTN achieves a new state-of-the-art MR image SR performance.
引用
收藏
页码:1356 / 1360
页数:5
相关论文
共 19 条
  • [1] Second-order Attention Network for Single Image Super-Resolution
    Dai, Tao
    Cai, Jianrui
    Zhang, Yongbing
    Xia, Shu-Tao
    Zhang, Lei
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11057 - 11066
  • [2] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [3] Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network
    Du, Jinglong
    He, Zhongshi
    Wang, Lulu
    Gholipour, Ali
    Zhou, Zexun
    Chen, Dingding
    Jia, Yuanyuan
    [J]. NEUROCOMPUTING, 2020, 392 : 209 - 220
  • [4] Du JL, 2018, IEEE INT C BIOINFORM, P349, DOI 10.1109/BIBM.2018.8621073
  • [5] Anchor-based Plain Net for Mobile Image Super-Resolution
    Du, Zongcai
    Liu, Jie
    Tang, Jie
    Wu, Gangshan
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2494 - 2502
  • [6] Multi-parametric neuroimaging reproducibility: A 3-T resource study
    Landman, Bennett A.
    Huang, Alan J.
    Gifford, Aliya
    Vikram, Deepti S.
    Lim, Issel Anne L.
    Farrell, Jonathan A. D.
    Bogovic, John A.
    Hua, Jun
    Chen, Min
    Jarso, Samson
    Smith, Seth A.
    Joel, Suresh
    Mori, Susumu
    Pekar, James J.
    Barker, Peter B.
    Prince, Jerry L.
    van Zijl, Peter C. M.
    [J]. NEUROIMAGE, 2011, 54 (04) : 2854 - 2866
  • [7] Non-local MRI upsampling
    Manjon, Jose V.
    Coupe, Pierrick
    Buades, Antonio
    Fonov, Vladimir
    Collins, D. Louis
    Robles, Montserrat
    [J]. MEDICAL IMAGE ANALYSIS, 2010, 14 (06) : 784 - 792
  • [8] Mei Yiqun, 2020, PYRAMID ATTENTION NE
  • [9] The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
    Menze, Bjoern H.
    Jakab, Andras
    Bauer, Stefan
    Kalpathy-Cramer, Jayashree
    Farahani, Keyvan
    Kirby, Justin
    Burren, Yuliya
    Porz, Nicole
    Slotboom, Johannes
    Wiest, Roland
    Lanczi, Levente
    Gerstner, Elizabeth
    Weber, Marc-Andre
    Arbel, Tal
    Avants, Brian B.
    Ayache, Nicholas
    Buendia, Patricia
    Collins, D. Louis
    Cordier, Nicolas
    Corso, Jason J.
    Criminisi, Antonio
    Das, Tilak
    Delingette, Herve
    Demiralp, Cagatay
    Durst, Christopher R.
    Dojat, Michel
    Doyle, Senan
    Festa, Joana
    Forbes, Florence
    Geremia, Ezequiel
    Glocker, Ben
    Golland, Polina
    Guo, Xiaotao
    Hamamci, Andac
    Iftekharuddin, Khan M.
    Jena, Raj
    John, Nigel M.
    Konukoglu, Ender
    Lashkari, Danial
    Mariz, Jose Antonio
    Meier, Raphael
    Pereira, Sergio
    Precup, Doina
    Price, Stephen J.
    Raviv, Tammy Riklin
    Reza, Syed M. S.
    Ryan, Michael
    Sarikaya, Duygu
    Schwartz, Lawrence
    Shin, Hoo-Chang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 1993 - 2024
  • [10] Multiscale brain MRI super-resolution using deep 3D convolutional networks
    Pham, Chi-Hieu
    Tor-Diez, Carlos
    Meunier, Helene
    Bednarek, Nathalie
    Fablet, Ronan
    Passat, Nicolas
    Rousseau, Francois
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 77